Loading…

Influence of Poly(styrene-co-maleic acid) Copolymer Structure on the Properties and Self-Assembly of SMALP Nanodiscs

Polymer stabilized nanodiscs are self-assembled structures composed of a polymer belt that wraps around a segment of lipid bilayer, and as such are capable of encapsulating membrane proteins directly from the cell membrane. To date, most studies on these nanodiscs have used poly­(styrene-co-maleic a...

Full description

Saved in:
Bibliographic Details
Published in:Biomacromolecules 2018-03, Vol.19 (3), p.761-772
Main Authors: Hall, Stephen C. L, Tognoloni, Cecilia, Price, Gareth J, Klumperman, Bert, Edler, Karen J, Dafforn, Tim R, Arnold, Thomas
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polymer stabilized nanodiscs are self-assembled structures composed of a polymer belt that wraps around a segment of lipid bilayer, and as such are capable of encapsulating membrane proteins directly from the cell membrane. To date, most studies on these nanodiscs have used poly­(styrene-co-maleic acid) (SMA) with the term SMA-lipid particles (SMALPs) coined to describe them. In this study, we have determined the physical and thermodynamic properties of such nanodiscs made with two different SMA copolymers. These include a widely used and commercially available statistical poly­(styrene-co-maleic acid) copolymer (coSMA) and a reversible addition–fragmentation chain transfer synthesized copolymer with narrow molecular weight distribution and alternating styrene and maleic acid groups with a polystyrene tail, (altSMA). We define phase diagrams for each polymer, and show that, regardless of polymer topological structure, self-assembly is driven by the free energy change associated with the polymers. We also show that nanodisc size is polymer dependent, but can be modified by varying polymer concentration. The thermal stability of each nanodisc type is similar, and both can effectively solubilize proteins from the E. coli membrane. These data show the potential for the development of different SMA polymers with controllable properties to produce nanodiscs that can be optimized for specific applications and will enable more optimized and widespread use of the SMA-based nanodiscs in membrane protein research.
ISSN:1525-7797
1526-4602
DOI:10.1021/acs.biomac.7b01539