Loading…

Ozonation of aniline promoted by activated carbon

The removal of aniline from aqueous solutions by simultaneous use of ozone and activated carbon was investigated at different solution pH. For comparative purposes, single ozonation and adsorption on activated carbon were carried out in the same experimental set-up. In order to evaluate the role of...

Full description

Saved in:
Bibliographic Details
Published in:Chemosphere (Oxford) 2007-03, Vol.67 (4), p.809-815
Main Authors: Faria, P.C.C., Órfão, J.J.M., Pereira, M.F.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The removal of aniline from aqueous solutions by simultaneous use of ozone and activated carbon was investigated at different solution pH. For comparative purposes, single ozonation and adsorption on activated carbon were carried out in the same experimental set-up. In order to evaluate the role of the activated carbon surface chemistry during ozonation, a commercial activated carbon, Norit GAC 1240 PLUS, was submitted to oxidation in the liquid phase with HNO 3. The texture and surface chemistry of the activated carbon samples were characterized. During ozonation, complete conversion of aniline was achieved after approximately 20 min, regardless of the presence of activated carbon. In all cases, several by-products were formed during ozonation. Nitrobenzene, o- and p-aminophenol were the primary aromatic oxidation by-products identified. In terms of TOC removal, best results were achieved by the simultaneous use of ozone and activated carbon. Though there is a strong contribution of adsorption, a considerable synergetic effect between ozone and activated carbon is observed. In general, activated carbon promotes the reaction of ozonation enhancing the efficiency of this treatment process. The basic activated carbon presented greater activity in this process leading to higher mineralization rates.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2006.10.020