Loading…

The sensitivity of breeding songbirds to changes in seasonal timing is linked to population change but cannot be directly attributed to the effects of trophic asynchrony on productivity

A consequence of climate change has been an advance in the timing of seasonal events. Differences in the rate of advance between trophic levels may result in predators becoming mismatched with prey availability, reducing fitness and potentially driving population declines. Such “trophic asynchrony”...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology 2018-03, Vol.24 (3), p.957-971
Main Authors: Franks, Samantha E., Pearce‐Higgins, James W., Atkinson, Sian, Bell, James R., Botham, Marc S., Brereton, Tom M., Harrington, Richard, Leech, David I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A consequence of climate change has been an advance in the timing of seasonal events. Differences in the rate of advance between trophic levels may result in predators becoming mismatched with prey availability, reducing fitness and potentially driving population declines. Such “trophic asynchrony” is hypothesized to have contributed to recent population declines of long‐distance migratory birds in particular. Using spatially extensive survey data from 1983 to 2010 to estimate variation in spring phenology from 280 plant and insect species and the egg‐laying phenology of 21 British songbird species, we explored the effects of trophic asynchrony on avian population trends and potential underlying demographic mechanisms. Species which advanced their laying dates least over the last three decades, and were therefore at greatest risk of asynchrony, exhibited the most negative population trends. We expressed asynchrony as the annual variation in bird phenology relative to spring phenology, and related asynchrony to annual avian productivity. In warmer springs, birds were more asynchronous, but productivity was only marginally reduced; long‐distance migrants, short‐distance migrants and resident bird species all exhibited effects of similar magnitude. Long‐term population, but not productivity, declines were greatest among those species whose annual productivity was most greatly reduced by asynchrony. This suggests that population change is not mechanistically driven by the negative effects of asynchrony on productivity. The apparent effects of asynchrony on population trends are therefore either more likely to be strongly expressed via other demographic pathways, or alternatively, are a surrogate for species' sensitivity to other environmental pressures which are the ultimate cause of decline. We use spatially extensive survey data of plants, invertebrates and birds to investigate whether asynchronous changes in egg‐laying dates relative to spring onset are associated with reduced avian productivity and consequently population change. Bird species which have advanced egg‐laying dates the least are declining fastest. In warmer springs, birds breed late relative to spring onset and productivity is reduced. Although species whose productivity is reduced the most are declining fastest, the mechanism cannot be directly attributed to the effects of asynchrony on productivity.
ISSN:1354-1013
1365-2486
DOI:10.1111/gcb.13960