Loading…

Gamma shielding factor for typical houses in Brazil

The housing features in a country depend much on its climate. Dwellings in warm countries are much lighter constructions than in cold ones, which will reflect on the amount of shielding against radiation they provide. In addition to that, wealth is another factor that influences the building's...

Full description

Saved in:
Bibliographic Details
Published in:Radiation protection dosimetry 2006-12, Vol.121 (4), p.420-424
Main Authors: Salinas, I. C. P., Conti, C. C., Rochedo, E. R. R., Lopes, R. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The housing features in a country depend much on its climate. Dwellings in warm countries are much lighter constructions than in cold ones, which will reflect on the amount of shielding against radiation they provide. In addition to that, wealth is another factor that influences the building's finishing. Great effort has been taken to determine parameters to more accurately estimate dose to a population in case of a radioactive or nuclear accident. Nevertheless, most available data are concerned with typical housing in cold climate countries. This study aims to determine shielding factors for typical building materials used in the southeast of Brazil, a warm area, due to radioactive material deposited on the surrounding field, walls and ceiling of the external surfaces. The shielding factors determination was performed by simulation with the MCNP5 Monte Carlo computer code. The air kerma indoors for the 300, 662 and 3000 keV photon energies have been determined for three different housing patterns, ranging from the very simple to a very complex structure. The shielding factor, defined as the ratio of the air kerma indoor to the air kerma in open field, for the most simple house type and 300 keV photon energy was found to be twice of the best finished one for the same energy.
ISSN:0144-8420
1742-3406
DOI:10.1093/rpd/ncl075