Loading…
Exogenous Tissue Plasminogen Activator Enhances Peripheral Nerve Regeneration and Functional Recovery After Injury In Mice
Tissue plasminogen activator (tPA) is an essential component of the proteolytic cascade that lyses blood clots. Various studies also suggest that tPA plays important roles in the nervous system. We show that exogenous tPA or tPA/plasminogen (plg) promotes axonal regeneration, remyelination, and func...
Saved in:
Published in: | Journal of neuropathology and experimental neurology 2006-01, Vol.65 (1), p.78-86 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Tissue plasminogen activator (tPA) is an essential component of the proteolytic cascade that lyses blood clots. Various studies also suggest that tPA plays important roles in the nervous system. We show that exogenous tPA or tPA/plasminogen (plg) promotes axonal regeneration, remyelination, and functional recovery after sciatic nerve injury in the mouse. Local application of tPA or tPA/plg 7 days after sciatic nerve crush significantly increased the total number of axons and myelinated axons, which is accompanied by enhanced expression of neurofilament. Treatment with tPA or tPA/plg reduced the deposition of fibrin(ogen) after nerve injury. Moreover, tPA or tPA/plg increased the number of macrophages and induced MMP-9 expression at the injury site, coincident with reduced collagen scar formation and accelerated clearance of myelin and lipid debris after treatment. Consequently, tPA or tPA/plg treatment protected muscles from atrophy after nerve injury, indicating better functional recovery. These results suggest that administration of exogenous tPA or tPA/plg promotes axonal regeneration and remyelination through removal of fibrin deposition and activation of MMP-9-positive macrophages, which may be responsible for myelin debris clearance and preventing collagen scar formation. Therefore, tPA may be useful for treatment of peripheral nerve injury. |
---|---|
ISSN: | 0022-3069 1554-6578 |
DOI: | 10.1097/01.jnen.0000195942.25163.f5 |