Loading…

Disposable Microfluidic Immunoarray Device for Sensitive Breast Cancer Biomarker Detection

Breast cancer is the most common cancer in women worldwide. The detection of biomarkers has played a significant role in the early diagnosis and prognosis of breast cancer. Herein, we describe the construction of a disposable microfluidic immunoarray device (DμID) for the rapid and low-cost detectio...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2017-08, Vol.9 (33), p.27433-27440
Main Authors: de Oliveira, Ricardo A. G, Materon, Elsa M, Melendez, Matias E, Carvalho, André L, Faria, Ronaldo C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Breast cancer is the most common cancer in women worldwide. The detection of biomarkers has played a significant role in the early diagnosis and prognosis of breast cancer. Herein, we describe the construction of a disposable microfluidic immunoarray device (DμID) for the rapid and low-cost detection of CA15-3 (carbohydrate antigen 15-3), a protein biomarker for breast cancer. The DμID was constructed using a simple and rapid prototyping technique and was applied to detect CA15-3 in cancer patients. The DμID construction was based on the use of a double-sided adhesive card with a microfluidic channel and a screen-printed array with 8 electrodes. Both the immunoarray and microfluidic channel were designed using an inexpensive home cutter printer and using low-cost materials. The immunoarray was modified using the layer-by-layer technique aiming at immobilizing the primary antibody. For the biomarker detection, magnetic particles (MPs) modified with polyclonal antibodies and peroxidase enzymes were used as a strategy for capture, separation, and preconcentration of the biomarker, in addition to amplification of the electroanalytical signal. The preconcentration and amplification strategies integrated with the nanostructured immunosensors of the DμID meaningfully contributed toward the detection of CA15-3 with a limit of detection (LoD) of 6 μU mL–1, requiring as low as 2 μL of serum samples for 8 simultaneous detections. The obtained LoD was 1200 times lower compared to those of other immunosensors previously reported in the literature. The DμID was applied for the detection of CA15-3 in real samples of breast cancer patients and was found to present an excellent correlation with the well-established commercial electrochemiluminescence immunoassay. The association of the DμID with nanostructured surfaces and analyte capturing with bioconjugated paramagnetic particles is essentially a promising breakthrough for the low-cost and accurate detection of cancer biomarkers.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b03350