Loading…

Switchable Plasmonic Film Using Nanoconfined Liquid Crystals

Structural coloration using plasmonic particles has received substantial attention due to its robust, permanent, and scalable characteristics across the full color range. In this study, a plasmonic structure based on a porous anodic aluminum oxide (AAO) film coated with a metallic film was fabricate...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2017-07, Vol.9 (29), p.25057-25061
Main Authors: Ryu, Seong Ho, Yoon, Dong Ki
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Structural coloration using plasmonic particles has received substantial attention due to its robust, permanent, and scalable characteristics across the full color range. In this study, a plasmonic structure based on a porous anodic aluminum oxide (AAO) film coated with a metallic film was fabricated. Colors were varied by changing the refractive index, which was achieved with a convolution with nanopores of AAO film and an infiltrated liquid crystal (LC) material. LC molecules confined in the porous AAO film were uniformly aligned, and they exhibited pore-size-dependent colors because of the specific refractive index. The thermal phase transition of the LC material in the nanopores changed the effective refractive index, switching the reflected colors, and the LC-infiltrated AAO remained stable over a month. We believe LC materials can extend the use of rigid conventional plasmonic structures from simple sensor applications to multifunctional uses such as color printing, writing pens, and displays.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b07693