Loading…

Keratinocyte growth factor and epidermal growth factor can reverse the intestinal atrophy associated with elemental diets in mice

Elemental diets are associated with intestinal atrophy and reduced intestinal integrity. Growth factors such as keratinocyte growth factor (KGF) and epidermal growth factor (EGF) have considerable potential for the therapeutic reversal of such atrophy and may have greater actions if given in combina...

Full description

Saved in:
Bibliographic Details
Published in:Experimental physiology 2003-03, Vol.88 (2), p.261-267
Main Authors: Sasaki, Masaya, FitzGerald, Anthony J., Mandir, Nikki, Berlanga-Acosta, Jorge, Goodlad, Robert A.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Elemental diets are associated with intestinal atrophy and reduced intestinal integrity. Growth factors such as keratinocyte growth factor (KGF) and epidermal growth factor (EGF) have considerable potential for the therapeutic reversal of such atrophy and may have greater actions if given in combination. We examined the effects of recombinant human KGF (rHuKGF), EGF and their combination on tissue mass, cell proliferation and crypt fission throughout the intestine of mice fed elemental diets. rHuKGF significantly increased the relative wet weight of the intestine, with EGF having a lesser effect. Cell proliferation of the stomach, small intestine and colon were significantly increased by rHuKGF, but EGF only increased proliferation in the small intestine. Crypt fission in the small intestine and colon was significantly decreased by rHuKGF. An interactive effect of rHuKGF and EGF on the weight of stomach and the proliferation of the fundus and antrum was observed. Moreover, an interactive effect of the agents was also seen on crypt fission in the colon. We concluded that (1) rHuKGF and EGF have significant trophic effects on the stomach, small intestine and colon, (2) these actions vary between different sites in the gastrointestinal tract, and (3) interactive effects occur. Experimental Physiology (2003) 88.2, 261-267.
ISSN:0958-0670
1469-445X
DOI:10.1113/eph8802466