Loading…

In Vitro Performance Investigation of SynCardia™ Freedom® Driver via Patient Simulator Mock Loop

Purpose The gold standard therapy for patients with advanced heart failure is heart transplant. The gap between donors and patients in waiting lists promoted the development of circulatory support devices, such as the total artificial heart (TAH). Focusing on in vitro tests performed with CardioWest...

Full description

Saved in:
Bibliographic Details
Published in:International journal of artificial organs 2016-10, Vol.39 (10), p.502-508
Main Authors: Toninato, Riccardo, Scuri, Silvia, Tarzia, Vincenzo, Gerosa, Gino, Susin, Francesca M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose The gold standard therapy for patients with advanced heart failure is heart transplant. The gap between donors and patients in waiting lists promoted the development of circulatory support devices, such as the total artificial heart (TAH). Focusing on in vitro tests performed with CardioWest™ TAH (CW) driven by the SynCardia Freedom® portable driver (FD) the present study goals are: i) prove the reliability of a hydraulic circuit used as patient simulator to replicate a quasi-physiological scenario for various hydrodynamic conditions, ii) investigate the hydrodynamic performance of the CW FD, iii) help clinicians in possible interpretation of clinical cases outcomes. Methods In vitro tests were performed using a mechanic-hydraulic patient simulator. Cardiac output (CO), CW ventricles filling, atrial, ventricles, aortic and pulmonary artery pressures were measured for different values of vascular resistance in both systemic (SVR) and pulmonary (PVR) physiological range. Results After increasing the PVR, the left atrial pressure decreased according to the expected physiological trend, while aortic pressure remained almost stable, proving the ability of the simulator to mimic a physiological scenario. Unexpectedly, the mean pulmonary artery pressure (P) was found to increase above 30 mmHg in the range of physiological PVR (2.6 WU) and for constant CO. Conclusions The increase in PPA is probably associated with the pre-set driving setup of the FD. The finding suggests a possible explanation of the clinical course of a patient who experienced complications soon after being supported by the FD, with the occurrence of dyspnea and pulmonary edema despite a high cardiac index.
ISSN:0391-3988
1724-6040
DOI:10.5301/ijao.5000524