Flow and wall shear stress characterization after endovascular aneurysm repair and endovascular aneurysm sealing in an infrarenal aneurysm model

Abstract Background Endovascular aneurysm repair (EVAR) with a modular endograft has become the preferred treatment for abdominal aortic aneurysms. A novel concept is endovascular aneurysm sealing (EVAS), consisting of dual endoframes surrounded by polymer-filled endobags. This dual-lumen configurat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vascular surgery 2017-12, Vol.66 (6), p.1844-1853
Main Authors: Boersen, Johannes T., MSc, Groot Jebbink, Erik, MSc, Versluis, Michel, PhD, Slump, Cornelis H., PhD, Ku, David N., MD, PhD, de Vries, Jean-Paul P.M., MD, PhD, Reijnen, Michel M.P.J., MD, PhD
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Endovascular aneurysm repair (EVAR) with a modular endograft has become the preferred treatment for abdominal aortic aneurysms. A novel concept is endovascular aneurysm sealing (EVAS), consisting of dual endoframes surrounded by polymer-filled endobags. This dual-lumen configuration is different from a bifurcation with a tapered trajectory of the flow lumen into the two limbs and may induce unfavorable flow conditions. These include low and oscillatory wall shear stress (WSS), linked to atherosclerosis, and high shear rates that may result in thrombosis. An in vitro study was performed to assess the impact of EVAR and EVAS on flow patterns and WSS. Methods Four abdominal aortic aneurysm phantoms were constructed, including three stented models, to study the influence of the flow divider on flow (Endurant [Medtronic, Minneapolis, Minn], AFX [Endologix, Irvine, Calif], and Nellix [Endologix]). Experimental models were tested under physiologic resting conditions, and flow was visualized with laser particle imaging velocimetry, quantified by shear rate, WSS, and oscillatory shear index (OSI) in the suprarenal aorta, renal artery (RA), and common iliac artery. Results WSS and OSI were comparable for all models in the suprarenal aorta. The RA flow profile in the EVAR models was comparable to the control, but a region of lower WSS was observed on the caudal wall compared with the control. The EVAS model showed a stronger jet flow with a higher shear rate in some regions compared with the other models. Small regions of low WSS and high OSI were found near the distal end of all stents in the common iliac artery compared with the control. Maximum shear rates in each region of interest were well below the pathologic threshold for acute thrombosis. Conclusions The different stent designs do not influence suprarenal flow. Lower WSS is observed in the caudal wall of the RA after EVAR and a higher shear rate after EVAS. All stented models have a small region of low WSS and high OSI near the distal outflow of the stents.
ISSN:0741-5214
1097-6809