Loading…

Scaffolds for 3D in vitro culture of neural lineage cells

[Display omitted] Understanding how neurodegenerative disorders develop is not only a key challenge for researchers but also for the wider society, given the rapidly aging populations in developed countries. Advances in this field require new tools with which to recreate neural tissue in vitro and p...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia 2017-05, Vol.54, p.1-20
Main Authors: Murphy, Ashley R., Laslett, Andrew, O'Brien, Carmel M., Cameron, Neil R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Understanding how neurodegenerative disorders develop is not only a key challenge for researchers but also for the wider society, given the rapidly aging populations in developed countries. Advances in this field require new tools with which to recreate neural tissue in vitro and produce realistic disease models. This in turn requires robust and reliable systems for performing 3D in vitro culture of neural lineage cells. This review provides a state of the art update on three-dimensional culture systems for in vitro development of neural tissue, employing a wide range of scaffold types including hydrogels, solid porous polymers, fibrous materials and decellularised tissues as well as microfluidic devices and lab-on-a-chip systems. To provide some context with in vivo development of the central nervous system (CNS), we also provide a brief overview of the neural stem cell niche, neural development and neural differentiation in vitro. We conclude with a discussion of future directions for this exciting and important field of biomaterials research. Neurodegenerative diseases, including dementia, Parkinson’s and Alzheimer’s diseases and motor neuron diseases, are a major societal challenge for aging populations. Understanding these conditions and developing therapies against them will require the development of new physical models of healthy and diseased neural tissue. Cellular models resembling neural tissue can be cultured in the laboratory with the help of 3D scaffolds – materials that allow the organization of neural cells into tissue-like structures. This review presents recent work on the development of different types of scaffolds for the 3D culture of neural lineage cells and the generation of functioning neural-like tissue. These in vitro culture systems are enabling the development of new approaches for modelling and tackling diseases of the brain and CNS.
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2017.02.046