Loading…

Ecological risk assessment for Pacific salmon exposed to dimethoate in California

A probabilistic risk assessment of the potential direct and indirect effects of acute dimethoate exposure to salmon populations of concern was conducted for 3 evolutionarily significant units (ESUs) of Pacific salmon in California. These ESUs were the Sacramento River winter‐run chinook, the Califor...

Full description

Saved in:
Bibliographic Details
Published in:Environmental toxicology and chemistry 2017-02, Vol.36 (2), p.532-543
Main Authors: Whitfield Aslund, Melissa, Breton, Roger L., Padilla, Lauren, Winchell, Michael, Wooding, Katie L., Moore, Dwayne R. J., Teed, R. Scott, Reiss, Rick, Whatling, Paul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A probabilistic risk assessment of the potential direct and indirect effects of acute dimethoate exposure to salmon populations of concern was conducted for 3 evolutionarily significant units (ESUs) of Pacific salmon in California. These ESUs were the Sacramento River winter‐run chinook, the California Central Valley spring‐run chinook, and the California Central Valley steelhead. Refined acute exposures were estimated using the Soil and Water Assessment Tool, a river basin–scale model developed to quantify the impact of land‐management practices in large, complex watersheds. Both direct effects (i.e., inhibition of brain acetylcholinesterase activity) and indirect effects (i.e., altered availability of aquatic invertebrate prey) were assessed. Risk to salmon and their aquatic invertebrate prey items was determined to be de minimis. Therefore, dimethoate is not expected to have direct or indirect adverse effects on Pacific salmon in these 3 ESUs. Environ Toxicol Chem 2017;36:532–543. © 2016 SETAC
ISSN:0730-7268
1552-8618
DOI:10.1002/etc.3563