Loading…

Greenhouse Gas and Energy Life Cycle Assessment of Pine Chemicals Derived from Crude Tall Oil and Their Substitutes

Summary Pine chemicals are co‐products of papermaking that are upgraded into diverse products from inks to adhesives. They can also be utilized for energy purposes. This research investigates the carbon and energy life cycle assessment (LCA) of pine chemicals derived from crude tall oil (CTO). The s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of industrial ecology 2016-10, Vol.20 (5), p.1108-1121
Main Authors: Cashman, Sarah A., Moran, Kevin M., Gaglione, Anthony G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary Pine chemicals are co‐products of papermaking that are upgraded into diverse products from inks to adhesives. They can also be utilized for energy purposes. This research investigates the carbon and energy life cycle assessment (LCA) of pine chemicals derived from crude tall oil (CTO). The study goals are to determine the cradle‐to‐gate carbon and energy footprint for CTO‐derived chemicals, compare CTO‐derived chemicals to their likely substitutes, and calculate the carbon and energy effects of shifting CTO resources from current chemical production to biodiesel production. The data collected represent 100% of the U.S. and 90% of the European CTO distillation industry for 2011. This analysis is the first industry‐level LCA of pine chemicals. The carbon footprint for CTO‐derived pine chemical products is 50% lower than the likely mix of alternative products, including hydrocarbon resins for rubber, ink, and adhesive, alkyl succinic anhydride for paper size, and heavy fuel oil for heat. Current and proposed European policies could result in CTO being classified as renewable biomass for energy production, creating incentive to convert CTO into fuel rather than chemicals. The differences in the carbon and energy footprints of utilizing CTO for biodiesel versus chemicals are not meaningful when comparing European CTO biodiesel, which displaces conventional diesel, to European CTO‐derived chemicals, which displace the previously discussed substitutes. Therefore, there is no additional carbon or energy benefit that accrues by diverting CTO from current chemical feedstock applications to use for biodiesel production in Europe.
ISSN:1088-1980
1530-9290
DOI:10.1111/jiec.12370