Loading…

Electronic and optical properties of Er-doped Y2O2S phosphors

In this paper, we report a detailed computational and experimental investigation of the structural, electronic and dynamic properties of undoped and Er3+-doped Y2O2S phosphors by using computational crystal field (CF) calculations and electronic density of states by density functional theory (DFT),...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2015-01, Vol.3 (43), p.11486-11496
Main Authors: Pokhrel, M, Kumar, G A, Ma, C-G, Brik, M G, Langloss, Brian W, Stanton, Ian N, Therien, Michael J, Sardar, D K, Mao, Yuanbing
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we report a detailed computational and experimental investigation of the structural, electronic and dynamic properties of undoped and Er3+-doped Y2O2S phosphors by using computational crystal field (CF) calculations and electronic density of states by density functional theory (DFT), combined with optical measurements including excitation spectra, emission spectra from X-ray, ultraviolet and near infrared (NIR) excitations, and quantum yield determination under ultraviolet and NIR excitations. Emission decays and quantum yields of the visible and NIR bands were measured for different Er3+ doping concentrations in the Er3+-doped Y2O2S phosphors. Results show that green (550 nm) and red (667 nm) emission intensity and the respective ratio of these emission intensities depend on both the excitation wavelength and the Er3+ doping concentration. Although the total emission efficiency does not appreciably depend on the excitation wavelength, the excitation wavelength that provided the highest efficiency was found to be 250 nm in these Er3+-doped Y2O2S phosphors with both 1% and 10% Er doping concentrations.
ISSN:2050-7526
2050-7534
DOI:10.1039/c5tc02665b