Loading…

Rethinking Mobile Data Offloading for LTE in Unlicensed Spectrum

Traditional mobile data offloading transfers cellular users to WiFi networks to relieve the cellular system from the pressure of the ever-increasing data traffic load. However, the spectrum utilization of the WiFi network is bound to suffer from potential packet collisions due to its contention-base...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications 2016-07, Vol.15 (7), p.4987-5000
Main Authors: Qimei Chen, Guanding Yu, Maaref, Amine, Li, Geoffrey Ye, Aiping Huang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Traditional mobile data offloading transfers cellular users to WiFi networks to relieve the cellular system from the pressure of the ever-increasing data traffic load. However, the spectrum utilization of the WiFi network is bound to suffer from potential packet collisions due to its contention-based access protocol, especially when the number of competing WiFi users grows large. To tackle this problem, we propose transferring some WiFi users to be served by the LTE system, in contrast to the traditional mobile data offloading which effectively offloads LTE traffic to the WiFi network. Meanwhile, leveraging the emerging LTE in unlicensed spectrum (LTE-U) technology, some unlicensed spectrum resources may be allocated to the LTE system in compensation for handling more WiFi users. In this way, a win-win situation would be generated since LTE can generally achieve better performance than WiFi due to its capability of centralized co-ordination. To facilitate it, three important challenging issues are addressed in the paper: which WiFi users should be transferred; how many WiFi users need to be transferred; and how much unlicensed resources should be relinquished to the LTE-U network. We investigate three different user transfer schemes according to the availability of channel state information (CSI): the random transfer, the distance-based transfer, and the CSI-based transfer. In each scheme, the minimum required amount of unlicensed resources under a given transferred user number is analyzed. Furthermore, we utilize the Nash bargaining solution (NBS) to develop joint user transfer and unlicensed resource allocation strategy to fulfill the win-win situation for both networks, whose performance is demonstrated by numerical simulation.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2016.2550038