Loading…

The GABAergic septohippocampal connection is impaired in a mouse model of Tauopathy

Abstract Alzheimer’s disease (AD), the most common cause of dementia nowadays, has been linked to alterations in the septohippocampal pathway (SHP), among other circuits in the brain. In fact, the GABAergic component of the SHP, which controls hippocampal rhythmic activity crucial for learning and m...

Full description

Saved in:
Bibliographic Details
Published in:Neurobiology of aging 2017-01, Vol.49, p.40-51
Main Authors: Soler, H, Dorca-Arévalo, J, González, M, Rubio, S.E, Avila, J, Soriano, E, Pascual, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Alzheimer’s disease (AD), the most common cause of dementia nowadays, has been linked to alterations in the septohippocampal pathway (SHP), among other circuits in the brain. In fact, the GABAergic component of the SHP, which controls hippocampal rhythmic activity crucial for learning and memory, is altered in the J20 mouse model of AD—a model that mimics the amyloid pathology of this disease ( Rubio et al., 2012 ). However, AD is characterized by another pathophysiological hallmark: the hyperphosphorylation and aggregation of the microtubule-associated protein Tau. To evaluate whether tauopathies alter the GABAergic SHP, we analyzed transgenic mice expressing human mutated Tau (VLW transgenic strain). We show that pyramidal neurons, mossy cells, and some Parvalbumin (PARV)-positive hippocampal interneurons in 2- and 8-month-old (mo) VLW mice accumulate phosphorylated forms of Tau (P-Tau). By tract-tracing studies of the GABAergic SHP, we describe early onset deterioration of GABAergic septohippocampal (SH) innervation on PARV-positive interneurons in 2-mo VLW mice. In 8-mo animals, this alteration was more severe and affected mainly P-Tau-accumulating PARV-positive interneurons. No major loss of GABAergic SHP neurons or PARV-positive hippocampal interneurons was observed, thereby indicating that this decline is not caused by neuronal loss but by the reduced number and complexity of GABAergic SHP axon terminals. The decrease in GABAergic SHP described in this study, targeted onto the PARV-positive/P-Tau-accumulating inhibitory neurons in the hippocampus, establishes a cellular correlation with the dysfunctions in rhythmic neuronal activity and excitation levels in the hippocampus. These dysfunctions are associated with the VLW transgenic strain in particular and with AD human pathology in general. These data, together with our previous results in the J20 mouse model, indicate that the GABAergic SHP is impaired in response to both amyloid-β and P-Tau accumulation. We propose that alterations in the GABAergic SHP, together with a dysfunction of P-Tau-accumulating PARV-positive neurons, contribute to the cognitive deficits and altered patterns of hippocampal activity present in tauopathies, including AD.
ISSN:0197-4580
1558-1497
DOI:10.1016/j.neurobiolaging.2016.09.006