Loading…

Laser-deposited CoCrMo alloy: Microstructure, wear, and electrochemical properties

CoCrMo alloy was deposited on a metallic substrate using laser engineered net shaping (LENS™) – a laser-based additive manufacturing technique. Several samples with five layers of deposit were fabricated at different combinations of laser power, powder feed rate, and scan velocity to study their inf...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2014-09, Vol.29 (17), p.2021-2027
Main Authors: Mantrala, Kedar M., Das, Mitun, Balla, Vamsi K., Srinivasa Rao, Ch, Kesava Rao, V.V.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:CoCrMo alloy was deposited on a metallic substrate using laser engineered net shaping (LENS™) – a laser-based additive manufacturing technique. Several samples with five layers of deposit were fabricated at different combinations of laser power, powder feed rate, and scan velocity to study their influence using L4 Orthogonal array. The deposits were evaluated for their microstructure, hardness, wear resistance, and electrochemical performance. Grey relational grade analysis and analysis of variance were applied to identify optimum process parameters. The x-ray diffraction and microstructural analysis of the deposits showed uniform and fine microstructural features. Our experimental results revealed that the coatings fabricated using high laser power (350 W), low powder feed rate (5 g/min), and high scan velocity (20 mm/s) provide the highest hardness (446 ± 2.87 Hv) and wear resistance (1.80 ± 0.0007 mm3/Nm). However, the corrosion resistance was observed to be high for the deposits fabricated using low laser power (200 W), low powder feed rate (5 g/min), and low scan velocity (10 mm/s).
ISSN:0884-2914
2044-5326
DOI:10.1557/jmr.2014.163