Loading…

Simulation of a Rapid Dropout Event for Highly Relativistic Electrons with the RBE Model

A flux dropout is a sudden and sizable decrease in the energetic electron population of the outer radiation belt on the time scale of a few hours. We simulated a flux dropout of highly relativistic 2.5 MeV electrons using the Radiation Belt Environment model, incorporating the pitch angle diffusion...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Space physics 2016-05, Vol.121 (5), p.4092-4102
Main Authors: Kang, S-B., Fok, M.-C., Glocer, A., Min, K.-W., Choi, C.-R., Choi, E., Hwang, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A flux dropout is a sudden and sizable decrease in the energetic electron population of the outer radiation belt on the time scale of a few hours. We simulated a flux dropout of highly relativistic 2.5 MeV electrons using the Radiation Belt Environment model, incorporating the pitch angle diffusion coefficients caused by electromagnetic ion cyclotron (EMIC) waves for the geomagnetic storm events of 23-26 October 2002. This simulation showed a remarkable decrease in the 2.5 MeV electron flux during main phase of the storm, compared to those without EMIC waves. This decrease was independent of magnetopause shadowing or drift loss to the magnetopause. We suggest that the flux decrease was likely to be primarily due to pitch angle scattering to the loss cone by EMIC waves. Furthermore, the 2.5 MeV electron flux calculated with EMIC waves correspond very well with that observed from Solar Anomalous and Magnetospheric Particle EXplorer spacecraft. EMIC wave scattering is therefore likely one of the key mechanisms to understand flux dropouts. We modeled EMIC wave intensities by the Kp index. However, the calculated dropout is a several hours earlier than the observed one. We propose that Kp is not the best parameter to predict EMIC waves.
ISSN:2169-9380
2169-9402
DOI:10.1002/2015JA021966