Loading…

The fate of high-redshift massive compact galaxies

Massive high-redshift quiescent compact galaxies (nicknamed red nuggets) have been traditionally connected to present-day elliptical galaxies, often overlooking the relationships that they may have with other galaxy types. We use large bulge–disc decomposition catalogues based on the Sloan Digital S...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2016-04, Vol.457 (2), p.1916-1930
Main Authors: de la Rosa, Ignacio G., La Barbera, Francesco, Ferreras, Ignacio, Sánchez Almeida, Jorge, Dalla Vecchia, Claudio, Martínez-Valpuesta, Inma, Stringer, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Massive high-redshift quiescent compact galaxies (nicknamed red nuggets) have been traditionally connected to present-day elliptical galaxies, often overlooking the relationships that they may have with other galaxy types. We use large bulge–disc decomposition catalogues based on the Sloan Digital Sky Survey to check the hypothesis that red nuggets have survived as compact cores embedded inside the haloes or discs of present-day massive galaxies. In this study, we designate a compact core as the bulge component that satisfies a prescribed compactness criterion. Photometric and dynamic mass–size and mass–density relations are used to show that, in the inner regions of galaxies at z ∼ 0.1, there are abundant compact cores matching the peculiar properties of the red nuggets, an abundance comparable to that of red nuggets at z ∼ 1.5. Furthermore, the morphology distribution of the present-day galaxies hosting compact cores is used to demonstrate that, in addition to the standard channel connecting red nuggets with elliptical galaxies, a comparable fraction of red nuggets might have ended up embedded in discs. This result generalizes the inside-out formation scenario; present-day massive galaxies can begin as dense spheroidal cores (red nuggets), around which either a spheroidal halo or a disc is formed later.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stw130