Loading…

Breaking the Speed Limits of Phase-Change Memory

Phase-change random-access memory (PCRAM) is one of the leading candidates for next-generation data-storage devices, but the trade-off between crystallization (writing) speed and amorphous-phase stability (data retention) presents a key challenge. We control the crystallization kinetics of a phase-c...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2012-06, Vol.336 (6088), p.1566-1569
Main Authors: Loke, D., Lee, T. H., Wang, W. J., Shi, L. P., Zhao, R., Yeo, Y. C., Chong, T. C., Elliott, S. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-f1b8a99f0f402d03a76d3484fb7a3f56f58a2ec31c42d7bb265bd569543f6c143
cites cdi_FETCH-LOGICAL-c509t-f1b8a99f0f402d03a76d3484fb7a3f56f58a2ec31c42d7bb265bd569543f6c143
container_end_page 1569
container_issue 6088
container_start_page 1566
container_title Science (American Association for the Advancement of Science)
container_volume 336
creator Loke, D.
Lee, T. H.
Wang, W. J.
Shi, L. P.
Zhao, R.
Yeo, Y. C.
Chong, T. C.
Elliott, S. R.
description Phase-change random-access memory (PCRAM) is one of the leading candidates for next-generation data-storage devices, but the trade-off between crystallization (writing) speed and amorphous-phase stability (data retention) presents a key challenge. We control the crystallization kinetics of a phase-change material by applying a constant low voltage via prestructural ordering (incubation) effects. A crystallization speed of 500 picoseconds was achieved, as well as high-speed reversible switching using 500-picosecond pulses. Ab initio molecular dynamics simulations reveal the phase-change kinetics in PCRAM devices and the structural origin of the incubation-assisted increase in crystallization speed. This paves the way for achieving a broadly applicable memory device, capable of nonvolatile operations beyond gigahertz data-transfer rates.
doi_str_mv 10.1126/science.1221561
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808091722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41585119</jstor_id><sourcerecordid>41585119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-f1b8a99f0f402d03a76d3484fb7a3f56f58a2ec31c42d7bb265bd569543f6c143</originalsourceid><addsrcrecordid>eNqF0U1P20AQBuBVBYLwce6pyFKFxMXJzH559whRgUpBIEHP1nq9S5zGdth1Dvx7HOIGqZec5jDPvNLoJeQ7whiRykm0lWusGyOlKCR-IyMELVJNgR2QEQCTqYJMHJOTGBcA_U6zI3JMaUYZRz0icBOc-Vs1r0k3d8nzyrkymVV11cWk9cnT3ESXTuemeXXJg6vb8H5GDr1ZRnc-zFPy5_bXy_Q-nT3e_Z5ez1IrQHepx0IZrT14DrQEZjJZMq64LzLDvJBeKEOdZWg5LbOioFIUpZBacOalRc5OydU2dxXat7WLXV5X0brl0jSuXcccFSjQmFG6nwqBkjNUaj8Filox0JvUn__RRbsOTf_zp8q45noTONkqG9oYg_P5KlS1Ce89yjcV5UNF-VBRf3Ex5K6L2pU7_6-THlwOwERrlj6Yxlbxy0nsa81Y735s3SJ2bdjtOQolsM_5AOeBn-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1021749498</pqid></control><display><type>article</type><title>Breaking the Speed Limits of Phase-Change Memory</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Loke, D. ; Lee, T. H. ; Wang, W. J. ; Shi, L. P. ; Zhao, R. ; Yeo, Y. C. ; Chong, T. C. ; Elliott, S. R.</creator><creatorcontrib>Loke, D. ; Lee, T. H. ; Wang, W. J. ; Shi, L. P. ; Zhao, R. ; Yeo, Y. C. ; Chong, T. C. ; Elliott, S. R.</creatorcontrib><description>Phase-change random-access memory (PCRAM) is one of the leading candidates for next-generation data-storage devices, but the trade-off between crystallization (writing) speed and amorphous-phase stability (data retention) presents a key challenge. We control the crystallization kinetics of a phase-change material by applying a constant low voltage via prestructural ordering (incubation) effects. A crystallization speed of 500 picoseconds was achieved, as well as high-speed reversible switching using 500-picosecond pulses. Ab initio molecular dynamics simulations reveal the phase-change kinetics in PCRAM devices and the structural origin of the incubation-assisted increase in crystallization speed. This paves the way for achieving a broadly applicable memory device, capable of nonvolatile operations beyond gigahertz data-transfer rates.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1221561</identifier><identifier>PMID: 22723419</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Annealing ; Atoms ; Condensed matter: structure, mechanical and thermal properties ; Constants ; Crystal defects ; Crystal dislocations ; Crystal structure ; Crystallization ; Cubes ; Data storage ; Electric fields ; Electric potential ; Electric pulses ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Glass transitions ; Kinetics ; Materials ; Memory ; Memory devices ; Nucleation ; Phase transitions ; Physics ; Random access memory ; Specific phase transitions ; Switches ; Transfer Rates (College) ; Transmission electron microscopy</subject><ispartof>Science (American Association for the Advancement of Science), 2012-06, Vol.336 (6088), p.1566-1569</ispartof><rights>Copyright © 2012 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-f1b8a99f0f402d03a76d3484fb7a3f56f58a2ec31c42d7bb265bd569543f6c143</citedby><cites>FETCH-LOGICAL-c509t-f1b8a99f0f402d03a76d3484fb7a3f56f58a2ec31c42d7bb265bd569543f6c143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41585119$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41585119$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,783,787,2893,2894,27938,27939,58572,58805</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26103673$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22723419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loke, D.</creatorcontrib><creatorcontrib>Lee, T. H.</creatorcontrib><creatorcontrib>Wang, W. J.</creatorcontrib><creatorcontrib>Shi, L. P.</creatorcontrib><creatorcontrib>Zhao, R.</creatorcontrib><creatorcontrib>Yeo, Y. C.</creatorcontrib><creatorcontrib>Chong, T. C.</creatorcontrib><creatorcontrib>Elliott, S. R.</creatorcontrib><title>Breaking the Speed Limits of Phase-Change Memory</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Phase-change random-access memory (PCRAM) is one of the leading candidates for next-generation data-storage devices, but the trade-off between crystallization (writing) speed and amorphous-phase stability (data retention) presents a key challenge. We control the crystallization kinetics of a phase-change material by applying a constant low voltage via prestructural ordering (incubation) effects. A crystallization speed of 500 picoseconds was achieved, as well as high-speed reversible switching using 500-picosecond pulses. Ab initio molecular dynamics simulations reveal the phase-change kinetics in PCRAM devices and the structural origin of the incubation-assisted increase in crystallization speed. This paves the way for achieving a broadly applicable memory device, capable of nonvolatile operations beyond gigahertz data-transfer rates.</description><subject>Annealing</subject><subject>Atoms</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Constants</subject><subject>Crystal defects</subject><subject>Crystal dislocations</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Cubes</subject><subject>Data storage</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electric pulses</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Glass transitions</subject><subject>Kinetics</subject><subject>Materials</subject><subject>Memory</subject><subject>Memory devices</subject><subject>Nucleation</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Random access memory</subject><subject>Specific phase transitions</subject><subject>Switches</subject><subject>Transfer Rates (College)</subject><subject>Transmission electron microscopy</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0U1P20AQBuBVBYLwce6pyFKFxMXJzH559whRgUpBIEHP1nq9S5zGdth1Dvx7HOIGqZec5jDPvNLoJeQ7whiRykm0lWusGyOlKCR-IyMELVJNgR2QEQCTqYJMHJOTGBcA_U6zI3JMaUYZRz0icBOc-Vs1r0k3d8nzyrkymVV11cWk9cnT3ESXTuemeXXJg6vb8H5GDr1ZRnc-zFPy5_bXy_Q-nT3e_Z5ez1IrQHepx0IZrT14DrQEZjJZMq64LzLDvJBeKEOdZWg5LbOioFIUpZBacOalRc5OydU2dxXat7WLXV5X0brl0jSuXcccFSjQmFG6nwqBkjNUaj8Filox0JvUn__RRbsOTf_zp8q45noTONkqG9oYg_P5KlS1Ce89yjcV5UNF-VBRf3Ex5K6L2pU7_6-THlwOwERrlj6Yxlbxy0nsa81Y735s3SJ2bdjtOQolsM_5AOeBn-0</recordid><startdate>20120622</startdate><enddate>20120622</enddate><creator>Loke, D.</creator><creator>Lee, T. H.</creator><creator>Wang, W. J.</creator><creator>Shi, L. P.</creator><creator>Zhao, R.</creator><creator>Yeo, Y. C.</creator><creator>Chong, T. C.</creator><creator>Elliott, S. R.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20120622</creationdate><title>Breaking the Speed Limits of Phase-Change Memory</title><author>Loke, D. ; Lee, T. H. ; Wang, W. J. ; Shi, L. P. ; Zhao, R. ; Yeo, Y. C. ; Chong, T. C. ; Elliott, S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-f1b8a99f0f402d03a76d3484fb7a3f56f58a2ec31c42d7bb265bd569543f6c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Annealing</topic><topic>Atoms</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Constants</topic><topic>Crystal defects</topic><topic>Crystal dislocations</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Cubes</topic><topic>Data storage</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electric pulses</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Glass transitions</topic><topic>Kinetics</topic><topic>Materials</topic><topic>Memory</topic><topic>Memory devices</topic><topic>Nucleation</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Random access memory</topic><topic>Specific phase transitions</topic><topic>Switches</topic><topic>Transfer Rates (College)</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loke, D.</creatorcontrib><creatorcontrib>Lee, T. H.</creatorcontrib><creatorcontrib>Wang, W. J.</creatorcontrib><creatorcontrib>Shi, L. P.</creatorcontrib><creatorcontrib>Zhao, R.</creatorcontrib><creatorcontrib>Yeo, Y. C.</creatorcontrib><creatorcontrib>Chong, T. C.</creatorcontrib><creatorcontrib>Elliott, S. R.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loke, D.</au><au>Lee, T. H.</au><au>Wang, W. J.</au><au>Shi, L. P.</au><au>Zhao, R.</au><au>Yeo, Y. C.</au><au>Chong, T. C.</au><au>Elliott, S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking the Speed Limits of Phase-Change Memory</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2012-06-22</date><risdate>2012</risdate><volume>336</volume><issue>6088</issue><spage>1566</spage><epage>1569</epage><pages>1566-1569</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Phase-change random-access memory (PCRAM) is one of the leading candidates for next-generation data-storage devices, but the trade-off between crystallization (writing) speed and amorphous-phase stability (data retention) presents a key challenge. We control the crystallization kinetics of a phase-change material by applying a constant low voltage via prestructural ordering (incubation) effects. A crystallization speed of 500 picoseconds was achieved, as well as high-speed reversible switching using 500-picosecond pulses. Ab initio molecular dynamics simulations reveal the phase-change kinetics in PCRAM devices and the structural origin of the incubation-assisted increase in crystallization speed. This paves the way for achieving a broadly applicable memory device, capable of nonvolatile operations beyond gigahertz data-transfer rates.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>22723419</pmid><doi>10.1126/science.1221561</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2012-06, Vol.336 (6088), p.1566-1569
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1808091722
source American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection
subjects Annealing
Atoms
Condensed matter: structure, mechanical and thermal properties
Constants
Crystal defects
Crystal dislocations
Crystal structure
Crystallization
Cubes
Data storage
Electric fields
Electric potential
Electric pulses
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Glass transitions
Kinetics
Materials
Memory
Memory devices
Nucleation
Phase transitions
Physics
Random access memory
Specific phase transitions
Switches
Transfer Rates (College)
Transmission electron microscopy
title Breaking the Speed Limits of Phase-Change Memory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-05T16%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20the%20Speed%20Limits%20of%20Phase-Change%20Memory&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Loke,%20D.&rft.date=2012-06-22&rft.volume=336&rft.issue=6088&rft.spage=1566&rft.epage=1569&rft.pages=1566-1569&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1221561&rft_dat=%3Cjstor_proqu%3E41585119%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-f1b8a99f0f402d03a76d3484fb7a3f56f58a2ec31c42d7bb265bd569543f6c143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1021749498&rft_id=info:pmid/22723419&rft_jstor_id=41585119&rfr_iscdi=true