Loading…
Breaking the Speed Limits of Phase-Change Memory
Phase-change random-access memory (PCRAM) is one of the leading candidates for next-generation data-storage devices, but the trade-off between crystallization (writing) speed and amorphous-phase stability (data retention) presents a key challenge. We control the crystallization kinetics of a phase-c...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2012-06, Vol.336 (6088), p.1566-1569 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-f1b8a99f0f402d03a76d3484fb7a3f56f58a2ec31c42d7bb265bd569543f6c143 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-f1b8a99f0f402d03a76d3484fb7a3f56f58a2ec31c42d7bb265bd569543f6c143 |
container_end_page | 1569 |
container_issue | 6088 |
container_start_page | 1566 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 336 |
creator | Loke, D. Lee, T. H. Wang, W. J. Shi, L. P. Zhao, R. Yeo, Y. C. Chong, T. C. Elliott, S. R. |
description | Phase-change random-access memory (PCRAM) is one of the leading candidates for next-generation data-storage devices, but the trade-off between crystallization (writing) speed and amorphous-phase stability (data retention) presents a key challenge. We control the crystallization kinetics of a phase-change material by applying a constant low voltage via prestructural ordering (incubation) effects. A crystallization speed of 500 picoseconds was achieved, as well as high-speed reversible switching using 500-picosecond pulses. Ab initio molecular dynamics simulations reveal the phase-change kinetics in PCRAM devices and the structural origin of the incubation-assisted increase in crystallization speed. This paves the way for achieving a broadly applicable memory device, capable of nonvolatile operations beyond gigahertz data-transfer rates. |
doi_str_mv | 10.1126/science.1221561 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808091722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41585119</jstor_id><sourcerecordid>41585119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-f1b8a99f0f402d03a76d3484fb7a3f56f58a2ec31c42d7bb265bd569543f6c143</originalsourceid><addsrcrecordid>eNqF0U1P20AQBuBVBYLwce6pyFKFxMXJzH559whRgUpBIEHP1nq9S5zGdth1Dvx7HOIGqZec5jDPvNLoJeQ7whiRykm0lWusGyOlKCR-IyMELVJNgR2QEQCTqYJMHJOTGBcA_U6zI3JMaUYZRz0icBOc-Vs1r0k3d8nzyrkymVV11cWk9cnT3ESXTuemeXXJg6vb8H5GDr1ZRnc-zFPy5_bXy_Q-nT3e_Z5ez1IrQHepx0IZrT14DrQEZjJZMq64LzLDvJBeKEOdZWg5LbOioFIUpZBacOalRc5OydU2dxXat7WLXV5X0brl0jSuXcccFSjQmFG6nwqBkjNUaj8Filox0JvUn__RRbsOTf_zp8q45noTONkqG9oYg_P5KlS1Ce89yjcV5UNF-VBRf3Ex5K6L2pU7_6-THlwOwERrlj6Yxlbxy0nsa81Y735s3SJ2bdjtOQolsM_5AOeBn-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1021749498</pqid></control><display><type>article</type><title>Breaking the Speed Limits of Phase-Change Memory</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Loke, D. ; Lee, T. H. ; Wang, W. J. ; Shi, L. P. ; Zhao, R. ; Yeo, Y. C. ; Chong, T. C. ; Elliott, S. R.</creator><creatorcontrib>Loke, D. ; Lee, T. H. ; Wang, W. J. ; Shi, L. P. ; Zhao, R. ; Yeo, Y. C. ; Chong, T. C. ; Elliott, S. R.</creatorcontrib><description>Phase-change random-access memory (PCRAM) is one of the leading candidates for next-generation data-storage devices, but the trade-off between crystallization (writing) speed and amorphous-phase stability (data retention) presents a key challenge. We control the crystallization kinetics of a phase-change material by applying a constant low voltage via prestructural ordering (incubation) effects. A crystallization speed of 500 picoseconds was achieved, as well as high-speed reversible switching using 500-picosecond pulses. Ab initio molecular dynamics simulations reveal the phase-change kinetics in PCRAM devices and the structural origin of the incubation-assisted increase in crystallization speed. This paves the way for achieving a broadly applicable memory device, capable of nonvolatile operations beyond gigahertz data-transfer rates.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1221561</identifier><identifier>PMID: 22723419</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Annealing ; Atoms ; Condensed matter: structure, mechanical and thermal properties ; Constants ; Crystal defects ; Crystal dislocations ; Crystal structure ; Crystallization ; Cubes ; Data storage ; Electric fields ; Electric potential ; Electric pulses ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Glass transitions ; Kinetics ; Materials ; Memory ; Memory devices ; Nucleation ; Phase transitions ; Physics ; Random access memory ; Specific phase transitions ; Switches ; Transfer Rates (College) ; Transmission electron microscopy</subject><ispartof>Science (American Association for the Advancement of Science), 2012-06, Vol.336 (6088), p.1566-1569</ispartof><rights>Copyright © 2012 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-f1b8a99f0f402d03a76d3484fb7a3f56f58a2ec31c42d7bb265bd569543f6c143</citedby><cites>FETCH-LOGICAL-c509t-f1b8a99f0f402d03a76d3484fb7a3f56f58a2ec31c42d7bb265bd569543f6c143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41585119$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41585119$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,783,787,2893,2894,27938,27939,58572,58805</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26103673$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22723419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loke, D.</creatorcontrib><creatorcontrib>Lee, T. H.</creatorcontrib><creatorcontrib>Wang, W. J.</creatorcontrib><creatorcontrib>Shi, L. P.</creatorcontrib><creatorcontrib>Zhao, R.</creatorcontrib><creatorcontrib>Yeo, Y. C.</creatorcontrib><creatorcontrib>Chong, T. C.</creatorcontrib><creatorcontrib>Elliott, S. R.</creatorcontrib><title>Breaking the Speed Limits of Phase-Change Memory</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Phase-change random-access memory (PCRAM) is one of the leading candidates for next-generation data-storage devices, but the trade-off between crystallization (writing) speed and amorphous-phase stability (data retention) presents a key challenge. We control the crystallization kinetics of a phase-change material by applying a constant low voltage via prestructural ordering (incubation) effects. A crystallization speed of 500 picoseconds was achieved, as well as high-speed reversible switching using 500-picosecond pulses. Ab initio molecular dynamics simulations reveal the phase-change kinetics in PCRAM devices and the structural origin of the incubation-assisted increase in crystallization speed. This paves the way for achieving a broadly applicable memory device, capable of nonvolatile operations beyond gigahertz data-transfer rates.</description><subject>Annealing</subject><subject>Atoms</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Constants</subject><subject>Crystal defects</subject><subject>Crystal dislocations</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Cubes</subject><subject>Data storage</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electric pulses</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Glass transitions</subject><subject>Kinetics</subject><subject>Materials</subject><subject>Memory</subject><subject>Memory devices</subject><subject>Nucleation</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Random access memory</subject><subject>Specific phase transitions</subject><subject>Switches</subject><subject>Transfer Rates (College)</subject><subject>Transmission electron microscopy</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0U1P20AQBuBVBYLwce6pyFKFxMXJzH559whRgUpBIEHP1nq9S5zGdth1Dvx7HOIGqZec5jDPvNLoJeQ7whiRykm0lWusGyOlKCR-IyMELVJNgR2QEQCTqYJMHJOTGBcA_U6zI3JMaUYZRz0icBOc-Vs1r0k3d8nzyrkymVV11cWk9cnT3ESXTuemeXXJg6vb8H5GDr1ZRnc-zFPy5_bXy_Q-nT3e_Z5ez1IrQHepx0IZrT14DrQEZjJZMq64LzLDvJBeKEOdZWg5LbOioFIUpZBacOalRc5OydU2dxXat7WLXV5X0brl0jSuXcccFSjQmFG6nwqBkjNUaj8Filox0JvUn__RRbsOTf_zp8q45noTONkqG9oYg_P5KlS1Ce89yjcV5UNF-VBRf3Ex5K6L2pU7_6-THlwOwERrlj6Yxlbxy0nsa81Y735s3SJ2bdjtOQolsM_5AOeBn-0</recordid><startdate>20120622</startdate><enddate>20120622</enddate><creator>Loke, D.</creator><creator>Lee, T. H.</creator><creator>Wang, W. J.</creator><creator>Shi, L. P.</creator><creator>Zhao, R.</creator><creator>Yeo, Y. C.</creator><creator>Chong, T. C.</creator><creator>Elliott, S. R.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20120622</creationdate><title>Breaking the Speed Limits of Phase-Change Memory</title><author>Loke, D. ; Lee, T. H. ; Wang, W. J. ; Shi, L. P. ; Zhao, R. ; Yeo, Y. C. ; Chong, T. C. ; Elliott, S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-f1b8a99f0f402d03a76d3484fb7a3f56f58a2ec31c42d7bb265bd569543f6c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Annealing</topic><topic>Atoms</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Constants</topic><topic>Crystal defects</topic><topic>Crystal dislocations</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Cubes</topic><topic>Data storage</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electric pulses</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Glass transitions</topic><topic>Kinetics</topic><topic>Materials</topic><topic>Memory</topic><topic>Memory devices</topic><topic>Nucleation</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Random access memory</topic><topic>Specific phase transitions</topic><topic>Switches</topic><topic>Transfer Rates (College)</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loke, D.</creatorcontrib><creatorcontrib>Lee, T. H.</creatorcontrib><creatorcontrib>Wang, W. J.</creatorcontrib><creatorcontrib>Shi, L. P.</creatorcontrib><creatorcontrib>Zhao, R.</creatorcontrib><creatorcontrib>Yeo, Y. C.</creatorcontrib><creatorcontrib>Chong, T. C.</creatorcontrib><creatorcontrib>Elliott, S. R.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loke, D.</au><au>Lee, T. H.</au><au>Wang, W. J.</au><au>Shi, L. P.</au><au>Zhao, R.</au><au>Yeo, Y. C.</au><au>Chong, T. C.</au><au>Elliott, S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking the Speed Limits of Phase-Change Memory</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2012-06-22</date><risdate>2012</risdate><volume>336</volume><issue>6088</issue><spage>1566</spage><epage>1569</epage><pages>1566-1569</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Phase-change random-access memory (PCRAM) is one of the leading candidates for next-generation data-storage devices, but the trade-off between crystallization (writing) speed and amorphous-phase stability (data retention) presents a key challenge. We control the crystallization kinetics of a phase-change material by applying a constant low voltage via prestructural ordering (incubation) effects. A crystallization speed of 500 picoseconds was achieved, as well as high-speed reversible switching using 500-picosecond pulses. Ab initio molecular dynamics simulations reveal the phase-change kinetics in PCRAM devices and the structural origin of the incubation-assisted increase in crystallization speed. This paves the way for achieving a broadly applicable memory device, capable of nonvolatile operations beyond gigahertz data-transfer rates.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>22723419</pmid><doi>10.1126/science.1221561</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2012-06, Vol.336 (6088), p.1566-1569 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808091722 |
source | American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection |
subjects | Annealing Atoms Condensed matter: structure, mechanical and thermal properties Constants Crystal defects Crystal dislocations Crystal structure Crystallization Cubes Data storage Electric fields Electric potential Electric pulses Equations of state, phase equilibria, and phase transitions Exact sciences and technology Glass transitions Kinetics Materials Memory Memory devices Nucleation Phase transitions Physics Random access memory Specific phase transitions Switches Transfer Rates (College) Transmission electron microscopy |
title | Breaking the Speed Limits of Phase-Change Memory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-05T16%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20the%20Speed%20Limits%20of%20Phase-Change%20Memory&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Loke,%20D.&rft.date=2012-06-22&rft.volume=336&rft.issue=6088&rft.spage=1566&rft.epage=1569&rft.pages=1566-1569&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1221561&rft_dat=%3Cjstor_proqu%3E41585119%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-f1b8a99f0f402d03a76d3484fb7a3f56f58a2ec31c42d7bb265bd569543f6c143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1021749498&rft_id=info:pmid/22723419&rft_jstor_id=41585119&rfr_iscdi=true |