Loading…

Dynamical separation of rigid bodies in supersonic flow

A computational investigation of the unsteady separation behavior of rigid bodies in Mach-4 flow is carried out. Two rigid bodies, a sphere and a cube, initially stationary, centroid axially aligned, are released and thereafter fly freely according to the aerodynamic forces experienced. During the s...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Technological sciences 2015-12, Vol.58 (12), p.2110-2121
Main Authors: Li, Tao, Sui, JingXia, Gong, Sheng, Wu, ChuiJie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A computational investigation of the unsteady separation behavior of rigid bodies in Mach-4 flow is carried out. Two rigid bodies, a sphere and a cube, initially stationary, centroid axially aligned, are released and thereafter fly freely according to the aerodynamic forces experienced. During the separation process, the smaller cube can experience different types of movement and our principal interest here is the non-dimensional transverse velocity of it. The separation behavior is investigated for interactions between a sphere and a cube with different mass ratio and a constant initial distance between them. The qualitative separation behavior and the final transverse velocity of the small body are found to vary strongly with the mass ratio but less sensitive to the initial distance between the two bodies. At a critical mass ratio for a given distance, the smaller body transit from entrainment within the flow region bounded by the larger body's shock to expulsion and the accumulated transverse velocity of the small body is close to maximum. This phenomenon is the so-called ‘shock-wave surfing' phenomenon noted by Laurence Deiterding for two spheres at hypersonic Mach numbers. Then we investigate the separation behavior of a sphere interaction with a rotary cube and with a non-rotary cube for a given mass ratio and different distance between them. The rotary is found to increase the likelihood of ‘surfing'. Only at a certain initial distance for a given mass ratio the rotary effect of cube can be neglectable.
ISSN:1674-7321
1869-1900
DOI:10.1007/s11431-015-5966-1