Loading…

Rauvolfia serpentina-Mediated Green Synthesis of CuO Nanoparticles and Its Multidisciplinary Studies

Copper oxide nanoparticles (CuO Nps) were successfully synthesized by solution combustion method using aqueous leaf extract of Rauvolfia serpentina as a fuel. The structure and morphology of the CuO nanoparticles (Nps) were characterized by powder X-ray diffraction (PXRD), UV-visible spectroscopy (U...

Full description

Saved in:
Bibliographic Details
Published in:Acta metallurgica sinica : English letters 2015-09, Vol.28 (9), p.1134-1140
Main Authors: Lingaraju, K., Naika, H. Raja, Manjunath, K., Nagaraju, G., Suresh, D., Nagabhushana, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Copper oxide nanoparticles (CuO Nps) were successfully synthesized by solution combustion method using aqueous leaf extract of Rauvolfia serpentina as a fuel. The structure and morphology of the CuO nanoparticles (Nps) were characterized by powder X-ray diffraction (PXRD), UV-visible spectroscopy (UV-visible), scanning electron microscopy (SEM), transmission electron microscopy (TEM), etc. The PXRD patterns reveal the formation of monoclinic phase with crystallite structure. SEM images indicate that the particles have sponge-like structure being highly porous and agglom- erated with large surface area. The average crystallite sizes were found to be in the range of 10-20 nm by Scherrer's method. The CuO Nps size was further confirmed by TEM. Further, CuO Nps exhibit good photocatalytic activity for the photodegradation of trypan blue dye, indicating that it acts as a promising semiconducting material. The antibacterial properties of CuO nanoparticles were investigated against pathogenic bacterial strains, namely Gram -ve Escherichia coli (NCIM-5051) and Pseudomonas desmolyticum (NCIM-2028) and Gram +ve bacteria Staphylococcus aureus (NCIM- 5022) using the agar well diffusion method.
ISSN:1006-7191
2194-1289
DOI:10.1007/s40195-015-0304-y