Loading…

Coarse Master Equations for Binding Kinetics of Amyloid Peptide Dimers

We characterize the kinetics of dimer formation of the short amyloid microcrystal-forming tetrapeptides NNQQ by constructing coarse master equations for the conformational dynamics of the system, using temperature replica-exchange molecular dynamics (REMD) simulations. We minimize the effects of Kra...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2016-07, Vol.7 (14), p.2676-2682
Main Authors: Leahy, Cathal T, Murphy, Ronan D, Hummer, Gerhard, Rosta, Edina, Buchete, Nicolae-Viorel
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We characterize the kinetics of dimer formation of the short amyloid microcrystal-forming tetrapeptides NNQQ by constructing coarse master equations for the conformational dynamics of the system, using temperature replica-exchange molecular dynamics (REMD) simulations. We minimize the effects of Kramers-type recrossings by assigning conformational states based on their sequential time evolution. Transition rates are further estimated from short-time state propagators by maximizing the likelihood that the extracted rates agree with the observed atomistic trajectories without any a priori assumptions about their temperature dependence. Here, we evaluate the rates for both continuous replica trajectories that visit different temperatures and for discontinuous data corresponding to each REMD temperature. While the binding–unbinding kinetic process is clearly Markovian, the conformational dynamics of the bound NNQQ dimer has a complex character. Our kinetic analysis allows us to discriminate between short-lived encounter pairs and strongly bound conformational states. The conformational dynamics of NNQQ dimers supports a kinetically driven aggregation mechanism, in agreement with the polymorphic character reported for amyloid aggregates such as microcrystals and fibrils.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.6b00518