Loading…

Pronounced Surface Band Bending of Thin-Film Silicon Revealed by Modeling Core Levels Probed with Hard X‑rays

Enhancing the probing depth of photoemission studies by using hard X-rays allows the investigation of buried interfaces of real-world device structures. However, it also requires the consideration of photoelectron-signal attenuation when evaluating surface effects. Here, we employ a computational mo...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2016-07, Vol.8 (27), p.17685-17693
Main Authors: Wippler, David, Wilks, Regan G, Pieters, Bart E, van Albada, Sacha J, Gerlach, Dominic, Hüpkes, Jürgen, Bär, Marcus, Rau, Uwe
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enhancing the probing depth of photoemission studies by using hard X-rays allows the investigation of buried interfaces of real-world device structures. However, it also requires the consideration of photoelectron-signal attenuation when evaluating surface effects. Here, we employ a computational model incorporating surface band bending and exponential photoelectron-signal attenuation to model depth-dependent spectral changes of Si 1s and Si 2s core level lines. The data were acquired from hydrogenated boron-doped microcrystalline thin-film silicon, which is applied in silicon-based solar cells. The core level spectra, measured by hard X-ray photoelectron spectroscopy using different excitation energies, reveal the presence of a 0.29 nm thick surface oxide layer. In the silicon film a downward surface band bending of eV bb = −0.65 eV over ∼6 nm obtained via inverse modeling explains the observed core level shifts and line broadening. Moreover, the computational model allows the extraction of the “real” Si 1s and Si 2s bulk core level binding energies as 1839.13 and 150.39 eV, and their natural Lorentzian line widths as 496 and 859 meV, respectively. These values significantly differ from those directly extracted from the measured spectra. Because band bending usually occurs at material surfaces we highly recommend the detailed consideration of signal integration over depth for quantitative statements from depth-dependent measurements.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.6b04666