Loading…

Mussel-Inspired Coating of Polydopamine Directs Endothelial and Smooth Muscle Cell Fate for Re-endothelialization of Vascular Devices

Polydopamine (PDAM), a mussel adhesive protein inspired coating that can be easily deposited onto a wide range of metallic, inorganic, and organic materials, gains interest also in the field of biomaterials. In this work, PDAM is applied as coating on 316L stainless steel (SS) stents and the respons...

Full description

Saved in:
Bibliographic Details
Published in:Advanced healthcare materials 2012-09, Vol.1 (5), p.548-559
Main Authors: Yang, Zhilu, Tu, Qiufen, Zhu, Ying, Luo, Rifang, Li, Xin, Xie, Yichu, Maitz, Manfred F., Wang, Jin, Huang, Nan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5433-c6871011969d2691de23d13908aa469fa99455c23f4711bcc697663dbe1d9a093
cites cdi_FETCH-LOGICAL-c5433-c6871011969d2691de23d13908aa469fa99455c23f4711bcc697663dbe1d9a093
container_end_page 559
container_issue 5
container_start_page 548
container_title Advanced healthcare materials
container_volume 1
creator Yang, Zhilu
Tu, Qiufen
Zhu, Ying
Luo, Rifang
Li, Xin
Xie, Yichu
Maitz, Manfred F.
Wang, Jin
Huang, Nan
description Polydopamine (PDAM), a mussel adhesive protein inspired coating that can be easily deposited onto a wide range of metallic, inorganic, and organic materials, gains interest also in the field of biomaterials. In this work, PDAM is applied as coating on 316L stainless steel (SS) stents and the response of cells of the blood vessel wall, human umbilical vein endothelial cell (HUVEC), and human umbilical artery smooth muscle cell (HUASMC) as predictors for re‐endothelialization is tested. It is found that the PDAM‐modified surface significantly enhances HUVEC adhesion, proliferation, and migration, release of nitric oxide (NO), and secretion of prostaglandin I2 (PGI2). Additionally, the PDAM‐modified surface shows a remarkable ability to decrease the adhesion and proliferation of HUASMCs. As a blood‐contacting material, the PDAM tends to improve the hemocompatibility compared with the substrate 316L SS. It is noteworthy that the PDAM coating shows good resistance to the deformation behavior of compression and expansion of a stent. These data suggest the potential of PDAM as a blood‐contacting material for the application in vascular stents or grafts. A durable, mussel‐inspired, polydopamine‐coated stent is reported. This mussel‐inspired coated stent shows significant enhancement in human umbilical vein endothelial cell (HUVEC) attachment, proliferation, migration, and function as compared with the bare 316L SS stent. The mussel‐inspired coated stent also has the substantial ability to inhibit human umbilical artery smooth muscle cell (HUASMC) adhesion and proliferation, suggesting it has the potential to address issues associated with re‐endothelialization and restenosis.
doi_str_mv 10.1002/adhm.201200073
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800476466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800476466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5433-c6871011969d2691de23d13908aa469fa99455c23f4711bcc697663dbe1d9a093</originalsourceid><addsrcrecordid>eNqFkc9vFCEYhidGY5u1V4-GxIuXWflgBoZjs9t2m7TaWH_FC2GBsVRmWGHGdr37f8tm62q87AkIz_vAl7congOeAsbktTI33ZRgIBhjTh8VhwQEKQmrxePdvsIHxVFKtxnBrAbWwNPigFBoKt6Iw-LX5ZiS9eV5n1YuWoNmQQ2u_4pCi66CX5uwUp3rLZrnWz0kdNKbMNxY75RHqjfougv5jLJGe4tm1nt0qgaL2hDRO1vav7j7mc2h35g_qqRHryKa2x9O2_SseNIqn-zRwzopPpyevJ8tyou3Z-ez44tS1xWlpWYNBwwgmDCECTCWUANU4EapiolWCVHVtSa0rTjAUmsmOGPULC0YobCgk-LV1ruK4fto0yA7l3T-s-ptGJOEBuOKsyqH9qI8q-sGAPajhOCaE8gzTIqX_6G3YYx9njkLc281pxXP1HRL6RhSiraVq-g6FdcSsNw0LzfNy13zOfDiQTsuO2t2-J-eMyC2wJ3zdr1HJ4_ni8t_5eU269Jg73dZFb9Jximv5ac3Z_mlL9eLq9lnSelvkBbHnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765957347</pqid></control><display><type>article</type><title>Mussel-Inspired Coating of Polydopamine Directs Endothelial and Smooth Muscle Cell Fate for Re-endothelialization of Vascular Devices</title><source>Wiley Online Library</source><creator>Yang, Zhilu ; Tu, Qiufen ; Zhu, Ying ; Luo, Rifang ; Li, Xin ; Xie, Yichu ; Maitz, Manfred F. ; Wang, Jin ; Huang, Nan</creator><creatorcontrib>Yang, Zhilu ; Tu, Qiufen ; Zhu, Ying ; Luo, Rifang ; Li, Xin ; Xie, Yichu ; Maitz, Manfred F. ; Wang, Jin ; Huang, Nan</creatorcontrib><description>Polydopamine (PDAM), a mussel adhesive protein inspired coating that can be easily deposited onto a wide range of metallic, inorganic, and organic materials, gains interest also in the field of biomaterials. In this work, PDAM is applied as coating on 316L stainless steel (SS) stents and the response of cells of the blood vessel wall, human umbilical vein endothelial cell (HUVEC), and human umbilical artery smooth muscle cell (HUASMC) as predictors for re‐endothelialization is tested. It is found that the PDAM‐modified surface significantly enhances HUVEC adhesion, proliferation, and migration, release of nitric oxide (NO), and secretion of prostaglandin I2 (PGI2). Additionally, the PDAM‐modified surface shows a remarkable ability to decrease the adhesion and proliferation of HUASMCs. As a blood‐contacting material, the PDAM tends to improve the hemocompatibility compared with the substrate 316L SS. It is noteworthy that the PDAM coating shows good resistance to the deformation behavior of compression and expansion of a stent. These data suggest the potential of PDAM as a blood‐contacting material for the application in vascular stents or grafts. A durable, mussel‐inspired, polydopamine‐coated stent is reported. This mussel‐inspired coated stent shows significant enhancement in human umbilical vein endothelial cell (HUVEC) attachment, proliferation, migration, and function as compared with the bare 316L SS stent. The mussel‐inspired coated stent also has the substantial ability to inhibit human umbilical artery smooth muscle cell (HUASMC) adhesion and proliferation, suggesting it has the potential to address issues associated with re‐endothelialization and restenosis.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201200073</identifier><identifier>PMID: 23184789</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Adhesion ; Animals ; Arteries ; Austenitic stainless steels ; Biomaterials ; Biomimetic Materials - chemistry ; Bivalvia - chemistry ; Blood Vessel Prosthesis ; Cell Adhesion - physiology ; Cell Proliferation ; Cell Survival - physiology ; Cells, Cultured ; Coated Materials, Biocompatible - chemistry ; Coating ; endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - physiology ; Heat resistant steels ; hemocompatibility ; Humans ; Indoles - chemistry ; Materials Testing ; Muscles ; Myocytes, Smooth Muscle - cytology ; Myocytes, Smooth Muscle - physiology ; polydopamine ; Polymers - chemistry ; Smooth muscle ; smooth muscle cells ; Stents ; Surgical implants ; Veins</subject><ispartof>Advanced healthcare materials, 2012-09, Vol.1 (5), p.548-559</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5433-c6871011969d2691de23d13908aa469fa99455c23f4711bcc697663dbe1d9a093</citedby><cites>FETCH-LOGICAL-c5433-c6871011969d2691de23d13908aa469fa99455c23f4711bcc697663dbe1d9a093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.201200073$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.201200073$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,786,790,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23184789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Zhilu</creatorcontrib><creatorcontrib>Tu, Qiufen</creatorcontrib><creatorcontrib>Zhu, Ying</creatorcontrib><creatorcontrib>Luo, Rifang</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Xie, Yichu</creatorcontrib><creatorcontrib>Maitz, Manfred F.</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Huang, Nan</creatorcontrib><title>Mussel-Inspired Coating of Polydopamine Directs Endothelial and Smooth Muscle Cell Fate for Re-endothelialization of Vascular Devices</title><title>Advanced healthcare materials</title><addtitle>Advanced Healthcare Materials</addtitle><description>Polydopamine (PDAM), a mussel adhesive protein inspired coating that can be easily deposited onto a wide range of metallic, inorganic, and organic materials, gains interest also in the field of biomaterials. In this work, PDAM is applied as coating on 316L stainless steel (SS) stents and the response of cells of the blood vessel wall, human umbilical vein endothelial cell (HUVEC), and human umbilical artery smooth muscle cell (HUASMC) as predictors for re‐endothelialization is tested. It is found that the PDAM‐modified surface significantly enhances HUVEC adhesion, proliferation, and migration, release of nitric oxide (NO), and secretion of prostaglandin I2 (PGI2). Additionally, the PDAM‐modified surface shows a remarkable ability to decrease the adhesion and proliferation of HUASMCs. As a blood‐contacting material, the PDAM tends to improve the hemocompatibility compared with the substrate 316L SS. It is noteworthy that the PDAM coating shows good resistance to the deformation behavior of compression and expansion of a stent. These data suggest the potential of PDAM as a blood‐contacting material for the application in vascular stents or grafts. A durable, mussel‐inspired, polydopamine‐coated stent is reported. This mussel‐inspired coated stent shows significant enhancement in human umbilical vein endothelial cell (HUVEC) attachment, proliferation, migration, and function as compared with the bare 316L SS stent. The mussel‐inspired coated stent also has the substantial ability to inhibit human umbilical artery smooth muscle cell (HUASMC) adhesion and proliferation, suggesting it has the potential to address issues associated with re‐endothelialization and restenosis.</description><subject>Adhesion</subject><subject>Animals</subject><subject>Arteries</subject><subject>Austenitic stainless steels</subject><subject>Biomaterials</subject><subject>Biomimetic Materials - chemistry</subject><subject>Bivalvia - chemistry</subject><subject>Blood Vessel Prosthesis</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Proliferation</subject><subject>Cell Survival - physiology</subject><subject>Cells, Cultured</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coating</subject><subject>endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - physiology</subject><subject>Heat resistant steels</subject><subject>hemocompatibility</subject><subject>Humans</subject><subject>Indoles - chemistry</subject><subject>Materials Testing</subject><subject>Muscles</subject><subject>Myocytes, Smooth Muscle - cytology</subject><subject>Myocytes, Smooth Muscle - physiology</subject><subject>polydopamine</subject><subject>Polymers - chemistry</subject><subject>Smooth muscle</subject><subject>smooth muscle cells</subject><subject>Stents</subject><subject>Surgical implants</subject><subject>Veins</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkc9vFCEYhidGY5u1V4-GxIuXWflgBoZjs9t2m7TaWH_FC2GBsVRmWGHGdr37f8tm62q87AkIz_vAl7congOeAsbktTI33ZRgIBhjTh8VhwQEKQmrxePdvsIHxVFKtxnBrAbWwNPigFBoKt6Iw-LX5ZiS9eV5n1YuWoNmQQ2u_4pCi66CX5uwUp3rLZrnWz0kdNKbMNxY75RHqjfougv5jLJGe4tm1nt0qgaL2hDRO1vav7j7mc2h35g_qqRHryKa2x9O2_SseNIqn-zRwzopPpyevJ8tyou3Z-ez44tS1xWlpWYNBwwgmDCECTCWUANU4EapiolWCVHVtSa0rTjAUmsmOGPULC0YobCgk-LV1ruK4fto0yA7l3T-s-ptGJOEBuOKsyqH9qI8q-sGAPajhOCaE8gzTIqX_6G3YYx9njkLc281pxXP1HRL6RhSiraVq-g6FdcSsNw0LzfNy13zOfDiQTsuO2t2-J-eMyC2wJ3zdr1HJ4_ni8t_5eU269Jg73dZFb9Jximv5ac3Z_mlL9eLq9lnSelvkBbHnA</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Yang, Zhilu</creator><creator>Tu, Qiufen</creator><creator>Zhu, Ying</creator><creator>Luo, Rifang</creator><creator>Li, Xin</creator><creator>Xie, Yichu</creator><creator>Maitz, Manfred F.</creator><creator>Wang, Jin</creator><creator>Huang, Nan</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>201209</creationdate><title>Mussel-Inspired Coating of Polydopamine Directs Endothelial and Smooth Muscle Cell Fate for Re-endothelialization of Vascular Devices</title><author>Yang, Zhilu ; Tu, Qiufen ; Zhu, Ying ; Luo, Rifang ; Li, Xin ; Xie, Yichu ; Maitz, Manfred F. ; Wang, Jin ; Huang, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5433-c6871011969d2691de23d13908aa469fa99455c23f4711bcc697663dbe1d9a093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adhesion</topic><topic>Animals</topic><topic>Arteries</topic><topic>Austenitic stainless steels</topic><topic>Biomaterials</topic><topic>Biomimetic Materials - chemistry</topic><topic>Bivalvia - chemistry</topic><topic>Blood Vessel Prosthesis</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Proliferation</topic><topic>Cell Survival - physiology</topic><topic>Cells, Cultured</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coating</topic><topic>endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - physiology</topic><topic>Heat resistant steels</topic><topic>hemocompatibility</topic><topic>Humans</topic><topic>Indoles - chemistry</topic><topic>Materials Testing</topic><topic>Muscles</topic><topic>Myocytes, Smooth Muscle - cytology</topic><topic>Myocytes, Smooth Muscle - physiology</topic><topic>polydopamine</topic><topic>Polymers - chemistry</topic><topic>Smooth muscle</topic><topic>smooth muscle cells</topic><topic>Stents</topic><topic>Surgical implants</topic><topic>Veins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhilu</creatorcontrib><creatorcontrib>Tu, Qiufen</creatorcontrib><creatorcontrib>Zhu, Ying</creatorcontrib><creatorcontrib>Luo, Rifang</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Xie, Yichu</creatorcontrib><creatorcontrib>Maitz, Manfred F.</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Huang, Nan</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhilu</au><au>Tu, Qiufen</au><au>Zhu, Ying</au><au>Luo, Rifang</au><au>Li, Xin</au><au>Xie, Yichu</au><au>Maitz, Manfred F.</au><au>Wang, Jin</au><au>Huang, Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mussel-Inspired Coating of Polydopamine Directs Endothelial and Smooth Muscle Cell Fate for Re-endothelialization of Vascular Devices</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Advanced Healthcare Materials</addtitle><date>2012-09</date><risdate>2012</risdate><volume>1</volume><issue>5</issue><spage>548</spage><epage>559</epage><pages>548-559</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><notes>ark:/67375/WNG-23ZSHPCX-3</notes><notes>istex:21D9B6853D410D6D5E05196409DEA6B0E98B9D7C</notes><notes>ArticleID:ADHM201200073</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Polydopamine (PDAM), a mussel adhesive protein inspired coating that can be easily deposited onto a wide range of metallic, inorganic, and organic materials, gains interest also in the field of biomaterials. In this work, PDAM is applied as coating on 316L stainless steel (SS) stents and the response of cells of the blood vessel wall, human umbilical vein endothelial cell (HUVEC), and human umbilical artery smooth muscle cell (HUASMC) as predictors for re‐endothelialization is tested. It is found that the PDAM‐modified surface significantly enhances HUVEC adhesion, proliferation, and migration, release of nitric oxide (NO), and secretion of prostaglandin I2 (PGI2). Additionally, the PDAM‐modified surface shows a remarkable ability to decrease the adhesion and proliferation of HUASMCs. As a blood‐contacting material, the PDAM tends to improve the hemocompatibility compared with the substrate 316L SS. It is noteworthy that the PDAM coating shows good resistance to the deformation behavior of compression and expansion of a stent. These data suggest the potential of PDAM as a blood‐contacting material for the application in vascular stents or grafts. A durable, mussel‐inspired, polydopamine‐coated stent is reported. This mussel‐inspired coated stent shows significant enhancement in human umbilical vein endothelial cell (HUVEC) attachment, proliferation, migration, and function as compared with the bare 316L SS stent. The mussel‐inspired coated stent also has the substantial ability to inhibit human umbilical artery smooth muscle cell (HUASMC) adhesion and proliferation, suggesting it has the potential to address issues associated with re‐endothelialization and restenosis.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>23184789</pmid><doi>10.1002/adhm.201200073</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2012-09, Vol.1 (5), p.548-559
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_miscellaneous_1800476466
source Wiley Online Library
subjects Adhesion
Animals
Arteries
Austenitic stainless steels
Biomaterials
Biomimetic Materials - chemistry
Bivalvia - chemistry
Blood Vessel Prosthesis
Cell Adhesion - physiology
Cell Proliferation
Cell Survival - physiology
Cells, Cultured
Coated Materials, Biocompatible - chemistry
Coating
endothelial cells
Endothelial Cells - cytology
Endothelial Cells - physiology
Heat resistant steels
hemocompatibility
Humans
Indoles - chemistry
Materials Testing
Muscles
Myocytes, Smooth Muscle - cytology
Myocytes, Smooth Muscle - physiology
polydopamine
Polymers - chemistry
Smooth muscle
smooth muscle cells
Stents
Surgical implants
Veins
title Mussel-Inspired Coating of Polydopamine Directs Endothelial and Smooth Muscle Cell Fate for Re-endothelialization of Vascular Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T18%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mussel-Inspired%20Coating%20of%20Polydopamine%20Directs%20Endothelial%20and%20Smooth%20Muscle%20Cell%20Fate%20for%20Re-endothelialization%20of%20Vascular%20Devices&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Yang,%20Zhilu&rft.date=2012-09&rft.volume=1&rft.issue=5&rft.spage=548&rft.epage=559&rft.pages=548-559&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201200073&rft_dat=%3Cproquest_cross%3E1800476466%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5433-c6871011969d2691de23d13908aa469fa99455c23f4711bcc697663dbe1d9a093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1765957347&rft_id=info:pmid/23184789&rfr_iscdi=true