Loading…

Longitudinal study of preterm and full-term infants: High-density EEG analyses of cortical activity in response to visual motion

Electroencephalogram (EEG) was used to investigate brain electrical activity of full-term and preterm infants at 4 and 12 months of age as a functional response mechanism to structured optic flow and random visual motion. EEG data were recorded with an array of 128-channel sensors. Visual evoked pot...

Full description

Saved in:
Bibliographic Details
Published in:Neuropsychologia 2016-04, Vol.84, p.89-104
Main Authors: Agyei, Seth B., van der Weel, F.R. (Ruud), van der Meer, Audrey L.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electroencephalogram (EEG) was used to investigate brain electrical activity of full-term and preterm infants at 4 and 12 months of age as a functional response mechanism to structured optic flow and random visual motion. EEG data were recorded with an array of 128-channel sensors. Visual evoked potentials (VEPs) and temporal spectral evolution (TSE, time-dependent amplitude changes) were analysed. VEP results showed a significant improvement in full-term infants' latencies with age for forwards and reversed optic flow but not random visual motion. Full-term infants at 12 months significantly differentiated between the motion conditions, with the shortest latency observed for forwards optic flow and the longest latency for random visual motion, while preterm infants did not improve their latencies with age, nor were they able to differentiate between the motion conditions at 12 months. Differences in induced activities were also observed where comparisons between TSEs of the motion conditions and a static non-flow pattern showed desynchronised theta-band activity in both full-term and preterm infants, with synchronised alpha-beta band activity observed only in the full-term infants at 12 months. Full-term infants at 12 months with a substantial amount of self-produced locomotor experience and neural maturation coupled with faster oscillating cell assemblies, rely on the perception of structured optic flow to move around efficiently in the environment. The poorer responses in the preterm infants could be related to impairment of the dorsal visual stream specialized in the processing of visual motion. •With acquired mobility, infants depend on accurate pick-up of visual information•Development of visual perception in (pre)term infants studied with high-density EEG•Changes in brain electrical activities were observed in VEP and induced EEG•Infants rely on perception of structured optic flow to move around efficiently•Preterm infants show poorer responses to visual flow compared to full-term infants
ISSN:0028-3932
1873-3514
DOI:10.1016/j.neuropsychologia.2016.02.001