Loading…

Gradient structure produced by three roll planetary milling: Numerical simulation and microstructural observations

In this study a gradient grain structure was produced by processing rod billets through three roll planetary milling (also known as PSW process). This kind of gradient structure is reported to provide an excellent combination of strength and ductility owing to an ultrafine-grained surface layer and...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2015-07, Vol.639, p.165-172
Main Authors: Li Wang, Ya, Molotnikov, Andrey, Diez, Mathilde, Lapovok, Rimma, Kim, Hyoun-Ee, Tao Wang, Jing, Estrin, Yuri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study a gradient grain structure was produced by processing rod billets through three roll planetary milling (also known as PSW process). This kind of gradient structure is reported to provide an excellent combination of strength and ductility owing to an ultrafine-grained surface layer and a coarse-grained interior of the billet. Specifically, copper rod samples were subjected to up to six passes of PSW at room temperature. To study the evolution of the microstructure during the deformation, microhardness measurements and Electron Backscatter Diffraction (EBSD) analysis were performed after one, three and six passes. Additionally, the distributions of the equivalent stress during PSW and the equivalent strain after processing were studied by finite element analysis using the commercial software QFORM. The results showed the efficacy of PSW as a means of imparting a gradient ultrafine-grained structure to copper rods. A good correlation between the simulated equivalent strain distribution and the measured microhardness distribution was demonstrated.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2015.04.078