Loading…

Size spectra, body width and morphotypes of intertidal nematodes: an ecological interpretation

Nematode species from three intertidal assemblages (St Lawrence Estuary, Quebec, Canada) were studied in order to form an ecological interpretation of three allometric attributes: body width, size spectra, and morphotypes. The three assemblages were characterized by a very similar sediment grain med...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Marine Biological Association of the United Kingdom 1999-12, Vol.79 (6), p.1007-1015
Main Authors: Tita, G., Vincx, M., Desrosiers, G.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nematode species from three intertidal assemblages (St Lawrence Estuary, Quebec, Canada) were studied in order to form an ecological interpretation of three allometric attributes: body width, size spectra, and morphotypes. The three assemblages were characterized by a very similar sediment grain median (Md) but different silt–clay proportions: A1 (upper-tidal level; Md=122 μm; silt=34.8%), A3 (mid-tidal level; Md=182 μm; silt=12.8%), and A5 (lower-tidal level; Md=122 μm; silt=6.8%). Silt–clay proportions were an influential factor in determining the mean nematode body width, used as a morphological discriminant between burrowing and interstitial organisms. A plot of the number of species vs the body width-classes showed two peaks: between 19.3 and 22.6 μm (interstitial), and between 32.0 and 45.5 μm (burrowers). As for the size spectra, in sandy sediments the mean nematode individual biomass was smaller than in muddy sediments. As a consequence, the estimated mean individual respiration rate was greater in muddy (A1=2.26 nl O2 h−1) than sandy sediments (A3=1.25 nl O2 h−1; A5=1.12 nl O2 h−1). In contrast, estimated metabolic ratios were lower in A1 (2.78 nl O2 h−1 μg−1 dry weight, DW) than in A3 (2.95 nl O2 h−1 μg−1 DW) and A5 (3.01 nl O2 h−1 μg−1 DW) suggesting different productivity and/or physiological adaptations to different lifestyles (burrowing vs interstitial) between species inhabiting muddy or sandy sediments. Morphotypes (body width/body length ratio=w/l ratio) were found to be associated with feeding groups. Small w/l ratios were typical of microvores, while greater ratios were typical of epigrowth feeders and predators. Ciliate-feeders, deposit-feeders and facultative predators had intermediate ratios. A morphotype food-related hypothesis is proposed: the species morphotype reflects the quality of exploited food; a small w/l ratio (i.e. long gut) would favour digestive efficiency and would be an adaptation to low quality food (microvores); inversely, a greater w/l ratio (i.e. short gut) would be an adaptation to high quality food (epigrowth-feeders and predators).
ISSN:0025-3154
1469-7769
DOI:10.1017/S0025315499001241