Loading…

Compatibility of Spatially Coded Apertures with a Miniature Mattauch-Herzog Mass Spectrograph

In order to minimize losses in signal intensity often present in mass spectrometry miniaturization efforts, we recently applied the principles of spatially coded apertures to magnetic sector mass spectrometry, thereby achieving increases in signal intensity of greater than 10× with no loss in mass r...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Society for Mass Spectrometry 2016-04, Vol.27 (4), p.578-584
Main Authors: Russell, Zachary E., DiDona, Shane T., Amsden, Jason J., Parker, Charles B., Kibelka, Gottfried, Gehm, Michael E., Glass, Jeffrey T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to minimize losses in signal intensity often present in mass spectrometry miniaturization efforts, we recently applied the principles of spatially coded apertures to magnetic sector mass spectrometry, thereby achieving increases in signal intensity of greater than 10× with no loss in mass resolution Chen et al. (J. Am. Soc. Mass Spectrom. 26 , 1633–1640, 2015 ), Russell et al. (J. Am. Soc. Mass Spectrom. 26 , 248–256, 2015 ). In this work, we simulate theoretical compatibility and demonstrate preliminary experimental compatibility of the Mattauch-Herzog mass spectrograph geometry with spatial coding. For the simulation-based theoretical assessment, COMSOL Multiphysics finite element solvers were used to simulate electric and magnetic fields, and a custom particle tracing routine was written in C# that allowed for calculations of more than 15 million particle trajectory time steps per second. Preliminary experimental results demonstrating compatibility of spatial coding with the Mattauch-Herzog geometry were obtained using a commercial miniature mass spectrograph from OI Analytical/Xylem.
ISSN:1044-0305
1879-1123
DOI:10.1007/s13361-015-1323-7