Loading…
Turbo and Turbo-Like Codes: Principles and Applications in Telecommunications
For decades, the de facto standard for forward error correction was a convolutional code decoded with the Viterbi algorithm, often concatenated with another code (e.g., a Reed-Solomon code). But since the introduction of turbo codes in 1993, much more powerful codes referred to collectively as turbo...
Saved in:
Published in: | Proceedings of the IEEE 2007, Vol.95 (6), p.1228-1254 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For decades, the de facto standard for forward error correction was a convolutional code decoded with the Viterbi algorithm, often concatenated with another code (e.g., a Reed-Solomon code). But since the introduction of turbo codes in 1993, much more powerful codes referred to collectively as turbo and turbo-like codes have eclipsed classical methods. These powerful error-correcting techniques achieve excellent error-rate performance that can closely approach Shannon's channel capacity limit. The lure of these large coding gains has resulted in their incorporation into a widening array of telecommunications standards and systems. This paper will briefly characterize turbo and turbo-like codes, examine their implications for physical layer system design, and discuss standards and systems where they are being used. The emphasis will be on telecommunications applications, particularly wireless, though others are mentioned. Some thoughts on the use of turbo and turbo-like codes in the future will also be given. |
---|---|
ISSN: | 0018-9219 1558-2256 |
DOI: | 10.1109/JPROC.2007.895197 |