Loading…

Vortices in holographic superfluids and superconductors as conformal defects

A bstract We present a detailed study of a single vortex in a holographic symmetry breaking phase. At low energies the system flows to an nontrivial conformal fixed point. Novel vortex physics arises from the interaction of these gapless degrees of freedom with the vortex: at low energies the vortex...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2014-04, Vol.2014 (4), p.1-46, Article 96
Main Authors: Dias, Óscar J. C., Horowitz, Gary T., Iqbal, Nabil, Santos, Jorge E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bstract We present a detailed study of a single vortex in a holographic symmetry breaking phase. At low energies the system flows to an nontrivial conformal fixed point. Novel vortex physics arises from the interaction of these gapless degrees of freedom with the vortex: at low energies the vortex may be understood as a conformal defect in this low energy theory. Defect conformal symmetry allows the construction of a simple infrared geometry describing a new kind of extremal horizon: a Poincaré horizon with a small bubble of magnetic Reissner-Nordström horizon inside it that carries a single unit of magnetic flux and a finite amount of entropy even at zero temperature. We also construct the full geometry describing the vortex at finite temperature in a UV complete theory. We study both superfluid and superconducting boundary conditions and calculate thermodynamic properties of the vortex. A study of vortex stability reveals that the dual superconductor can be Type I or Type II, depending on the charge of the condensed scalar. Finally, we study forces on a moving vortex at finite temperature from the point of view of defect conformal symmetry and show that these forces can be expressed in terms of Kubo formulas of defect CFT operators.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP04(2014)096