Loading…

Compressive failure of laminates containing an embedded wrinkle; experimental and numerical study

An experimental and numerical study has been carried out to understand and predict the compressive failure performance of quasi-isotropic carbon–epoxy laminates with out-of-plane wrinkle defects. Test coupons with artificially induced fibre-wrinkling of varied severity were manufactured and tested....

Full description

Saved in:
Bibliographic Details
Published in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2015-06, Vol.73, p.132-142
Main Authors: Mukhopadhyay, Supratik, Jones, Mike I., Hallett, Stephen R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An experimental and numerical study has been carried out to understand and predict the compressive failure performance of quasi-isotropic carbon–epoxy laminates with out-of-plane wrinkle defects. Test coupons with artificially induced fibre-wrinkling of varied severity were manufactured and tested. The wrinkles were seen to significantly reduce the pristine compressive strength of the laminates. High-speed video of the gauge section was taken during the test, which showed extensive damage localisation in the wrinkle region. 3D finite element (FE) simulations were carried out in Abaqus/Explicit with continuum damage and cohesive zone models incorporated to predict failure. The FE analyses captured the locations of damage and failure stress levels very well for a range of different wrinkle configurations. At lower wrinkle severities, the analyses predicted a failure mode of compressive fibre-failure, which changed to delamination at higher wrinkle angles. This was confirmed by the tests.
ISSN:1359-835X
1878-5840
DOI:10.1016/j.compositesa.2015.03.012