Loading…

Injury-Driven Stiffening of the Dermis Expedites Skin Carcinoma Progression

Recessive dystrophic epidermolysis bullosa (RDEB) is a genetic skin fragility disorder characterized by injury-driven blister formation, progressive soft-tissue fibrosis, and a highly elevated risk of early-onset aggressive cutaneous squamous cell carcinoma (cSCC). However, the mechanisms underlying...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Ill.), 2016-02, Vol.76 (4), p.940-951
Main Authors: Mittapalli, Venugopal R, Madl, Josef, Löffek, Stefanie, Kiritsi, Dimitra, Kern, Johannes S, Römer, Winfried, Nyström, Alexander, Bruckner-Tuderman, Leena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recessive dystrophic epidermolysis bullosa (RDEB) is a genetic skin fragility disorder characterized by injury-driven blister formation, progressive soft-tissue fibrosis, and a highly elevated risk of early-onset aggressive cutaneous squamous cell carcinoma (cSCC). However, the mechanisms underlying the unusually rapid progression of RDEB to cSCC are unknown. In this study, we investigated the contribution of injury-induced skin alterations to cSCC development by using a genetic model of RDEB and organotypic skin cultures. Analysis of RDEB patient samples suggested that premalignant changes to the dermal microenvironment drive tumor progression, which led us to subject a collagen VII hypomorphic mouse model of RDEB to chemical carcinogenesis. Carcinogen-treated RDEB mice developed invasive tumors phenocopying human RDEB-cSCC, whereas wild-type mice formed papillomas, indicating that the aggressiveness of RDEB-cSCC is mutation-independent. The inherent structural instability of the RDEB dermis, combined with repeated injury, increased the bioavailability of TGFβ, which promoted extracellular matrix production, cross-linking, thickening of dermal fibrils, and tissue stiffening. The biophysically altered dermis increased myofibroblast activity and integrin β1/pFAK/pAKT mechanosignaling in tumor cells, further demonstrating that cSCC progression is governed by pre-existing injury-driven changes in the RDEB tissue microenvironment. Treatment of three-dimensional organotypic RDEB skin cultures with inhibitors of TGFβ signaling, lysyl oxidase, or integrin β1-mediated mechanosignaling reduced or bypassed tissue stiffness and limited tumor cell invasion. Collectively, these findings provide a new mechanism by which RDEB tissue becomes malignant and offer new druggable therapeutic targets to prevent cSCC onset.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.can-15-1348