Loading…

A Distinct Subpopulation of Bone Marrow Mesenchymal Stem Cells, Muse Cells, Directly Commit to the Replacement of Liver Components

Genotyping graft livers by short tandem repeats after human living-donor liver transplantation (n = 20) revealed the presence of recipient or chimeric genotype cases in hepatocytes (6 of 17, 35.3%), sinusoidal cells (18 of 18, 100%), cholangiocytes (15 of 17, 88.2%) and cells in the periportal areas...

Full description

Saved in:
Bibliographic Details
Published in:American journal of transplantation 2016-02, Vol.16 (2), p.468-483
Main Authors: Katagiri, H., Kushida, Y., Nojima, M., Kuroda, Y., Wakao, S., Ishida, K., Endo, F., Kume, K., Takahara, T., Nitta, H., Tsuda, H., Dezawa, M., Nishizuka, S.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Genotyping graft livers by short tandem repeats after human living-donor liver transplantation (n = 20) revealed the presence of recipient or chimeric genotype cases in hepatocytes (6 of 17, 35.3%), sinusoidal cells (18 of 18, 100%), cholangiocytes (15 of 17, 88.2%) and cells in the periportal areas (7 of 8, 87.5%), suggesting extrahepatic cell involvement in liver regeneration. Regarding extrahepatic origin, bone marrow mesenchymal stem cells (BM-MSCs) have been suggested to contribute to liver regeneration but compose a heterogeneous population. We focused on a more specific subpopulation (1–2% of BM-MSCs), called multilineage-differentiating stress-enduring (Muse) cells, for their ability to differentiate into liver-lineage cells and repair tissue. We generated a physical partial hepatectomy model in immunodeficient mice and injected green fluorescent protein (GFP)-labeled human BM-MSC Muse cells intravenously (n = 20). Immunohistochemistry, fluorescence in situ hybridization and species-specific polymerase chain reaction revealed that they integrated into regenerating areas and expressed liver progenitor markers during the early phase and then differentiated spontaneously into major liver components, including hepatocytes (≈74.3% of GFP-positive integrated Muse cells), cholangiocytes (≈17.7%), sinusoidal endothelial cells (≈2.0%), and Kupffer cells (≈6.0%). In contrast, the remaining cells in the BM-MSCs were not detected in the liver for up to 4 weeks. These results suggest that Muse cells are the predominant population of BM-MSCs that are capable of replacing major liver components during liver regeneration.
ISSN:1600-6135
1600-6143
DOI:10.1111/ajt.13537