Unified analytical treatments of qubit-oscillator systems

An effective scheme within two displaced bosonic operators with equal positive and negative displacements is extended to study qubit-oscillator systems analytically in a unified way. Many previous analytical treatments, such as generalized rotating-wave approximation (GRWA) [Phys. Rev. Lett. 99, 173...

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics B 2013-06, Vol.22 (6), p.369-379, Article 064205
Main Author: 贺树 张瑜瑜 陈庆虎 任学藻 刘涛 汪克林
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An effective scheme within two displaced bosonic operators with equal positive and negative displacements is extended to study qubit-oscillator systems analytically in a unified way. Many previous analytical treatments, such as generalized rotating-wave approximation (GRWA) [Phys. Rev. Lett. 99, 173601 (2007)] and an expansion in the qubit tunneling matrix element in the deep strong coupling regime [Phys. Rev. Lett. 105, 263603 (2010)] can be recovered straightforwardly within the present scheme. Moreover, further improving GRWA and the extension to the finite-bias case are implemented easily. The algebraic formulae for the eigensolutions are then derived explicitly and uniquely, which work well in a wide range of the coupling strengths, detunings, and static bias including the recent experimentally accessible parameters. The dynamics of the qubit for an oscillator in the ground state is also studied. At the experimentally accessible coupling regime, GRWA can always work well. When the coupling is enhanced to the intermediate regime, only the improving GRWA can give the correct description, while the result of GRWA shows strong deviations. The previous Van Vleck perturbation theory is not valid to describe the dynamics in the present-day experimentally accessible regime, except for the strongly biased cases.
ISSN:1674-1056
2058-3834