Loading…

XPS and Raman studies of electron irradiated sodium silicate glass

The microstructure modifications of sodium silicate glass induced by 1.2-MeV electron irradiation are studied by x-ray photoelectron spectroscopy and Raman spectroscopy. Depth profile analyses are also performed on the irradiated glass at 109 Gy. A sodium-depleted layer with a thickness of a few ten...

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics B 2013-12, Vol.22 (12), p.352-357
Main Author: 陈亮 王铁山 张根发 杨坤杰 彭海波 张利民
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The microstructure modifications of sodium silicate glass induced by 1.2-MeV electron irradiation are studied by x-ray photoelectron spectroscopy and Raman spectroscopy. Depth profile analyses are also performed on the irradiated glass at 109 Gy. A sodium-depleted layer with a thickness of a few tens of nanometers and the corresponding increase of network polymerization on the top surface are observed after electron bombardment, while the polymerization in the subsurface region has a negligible variation with the irradiation dose. Moreover, the formation of molecular oxygen after electron irradiation is evidenced, which is mainly aggregated in the first two-micron-thick irradiated glass surface. These modifications are correlated to the network relaxation process as a consequence of the diffusion and desorption of sodium species during electron irradiation.
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/22/12/126101