Loading…

Synthesis of aqueous ferrofluids of ZnxFe3−xO4 nanoparticles by citric acid assisted hydrothermal-reduction route for magnetic hyperthermia applications

Superparamagnetic and monodispersed aqueous ferrofluids of Zn substituted magnetite nanoparticles (ZnxFe3−xO4, x=0, 0.25, 0.3, 0.37 and 0.4) were synthesized via hydrothermal-reduction route in the presence of citric acid, which is a facile, low energy and environmental friendly method. The synthesi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetism and magnetic materials 2012-07, Vol.324 (14), p.2211-2217
Main Authors: Behdadfar, Behshid, Kermanpur, Ahmad, Sadeghi-Aliabadi, Hojjat, Morales, Maria del Puerto, Mozaffari, Morteza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Superparamagnetic and monodispersed aqueous ferrofluids of Zn substituted magnetite nanoparticles (ZnxFe3−xO4, x=0, 0.25, 0.3, 0.37 and 0.4) were synthesized via hydrothermal-reduction route in the presence of citric acid, which is a facile, low energy and environmental friendly method. The synthesized nanoparticles were characterized by X ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, scanning and transmission electron microscopy (SEM and TEM) and the dynamic light scattering (DLS) method. The results showed that a certain amount of citric acid was required to obtain single phase Zn substituted magnetite nanoparticles. Citric acid acted as a modulator and reducing agent in the formation of spinel structure and controlled nanoparticle size and crystallinity. Mean particle sizes of the prepared nanoparticles were around 10nm. The results that are obtained from XRD, magnetic and power loss measurements showed that the crystallinity, saturation magnetization (MS) and loss power of the synthesized ferrofluids were all influenced by the substitution of Zn in the structure of magnetite. The Zn substituted magnetite nanoparticles obtained by this route showed a good stability in aqueous medium (pH 7) and hydrodynamic sizes below 100nm and polydispersity indexes below 0.2. The calculated intrinsic loss power (ILP) for the sample x=0.3 (e.g. 2.36nHm2/kg) was comparable to ILP of commercial ferrofluids with similar hydrodynamic sizes. ► We synthesized Zn substituted magnetite nanoparticles via hydrothermal-reduction route. ► We used citric acid as a reducing agent in this route. ► This route is a facile, low energy and environmental friendly method. ► The nanoparticles obtained by this route were superparamagnetic and stable in water. ► The calculated intrinsic loss power for the sample x=0.3 was 2.36nHm2/kg.
ISSN:0304-8853
DOI:10.1016/j.jmmm.2012.02.034