Loading…

Validation of standard and alternative satellite ocean-color chlorophyll products off Western Iberia

Chlorophyll a concentration (Chl) product validation off the Western Iberian coast is here undertaken by directly comparing remote sensing data with in situ surface reference values. Both standard and recently developed alternative algorithms are considered for match-up data analysis. The investigat...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment 2015-10, Vol.168, p.403-419
Main Authors: Sá, C., D'Alimonte, D., Brito, A.C., Kajiyama, T., Mendes, C.R., Vitorino, J., Oliveira, P.B., da Silva, J.C.B., Brotas, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chlorophyll a concentration (Chl) product validation off the Western Iberian coast is here undertaken by directly comparing remote sensing data with in situ surface reference values. Both standard and recently developed alternative algorithms are considered for match-up data analysis. The investigated standard products are those produced by the MERIS (algal 1 and algal 2) and MODIS (OC3M) algorithms. The alternative data products include those generated within the CoastColour Project and Ocean Color Climate Change Initiative (OC-CCI) funded by ESA, as well as a neural net model trained with field measurements collected in the Atlantic off Portugal (MLPATLP). Statistical analyses showed that satellite Chl estimates tend to be larger than in situ reference values. The study also revealed that a non-uniform Chl distribution in the water column can be a concurring factor to the documented overestimation tendency when considering larger optical depth match-up stations. Among standard remote sensing products, MODIS OC3M and MERIS algal 2 yield the best agreement with in situ data. The performance of MLPATLP highlights the capability of regional solutions to further improve Chl retrieval by accounting for environmental specificities. Results also demonstrate the relevance of oceanographic regions such as the Nazaré area to evaluate how complex hydrodynamic conditions can influence the quality of Chl products. •Validation of recently developed chlorophyll a satellite products with in situ data•Bio-optical algorithm development and application analysis•Comparison of standard and regional chlorophyll a data products•Monitoring of the western Iberia marine environment
ISSN:0034-4257
1879-0704
DOI:10.1016/j.rse.2015.07.018