Loading…

Glucose-Promoted Localization Dynamics of Excess Electrons in Aqueous Glucose Solution Revealed by Ab Initio Molecular Dynamics Simulation

Ab initio molecular dynamics simulations reveal that an excess electron (EE) can be more efficiently localized as a cavity-shaped state in aqueous glucose solution (AGS) than in water. Compared with that (∼1.5 ps) in water, the localization time is shortened by ∼0.7–1.2 ps in three AGSs (0.56, 1.12,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation 2014-10, Vol.10 (10), p.4189-4197
Main Authors: Liu, Jinxiang, Cukier, Robert I, Bu, Yuxiang, Shang, Yuan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ab initio molecular dynamics simulations reveal that an excess electron (EE) can be more efficiently localized as a cavity-shaped state in aqueous glucose solution (AGS) than in water. Compared with that (∼1.5 ps) in water, the localization time is shortened by ∼0.7–1.2 ps in three AGSs (0.56, 1.12, and 2.87 M). Although the radii of gyration of the solvated EEs are all close to 2.6 Å in the four solutions, the solvated EE cavities in the AGSs become more compact and can localize ∼80% of an EE, which is considerably larger than that (∼40–60% and occasionally ∼80%) in water. These observations are attributed to a modification of the hydrogen-bonded network by the introduction of glucose molecules into water. The water acts as a promoter and stabilizer, by forming voids around glucose molecules and, in this fashion, favoring the localization of an EE with high efficiency. This study provides important information about EEs in physiological AGSs and suggests a new strategy to efficiently localize an EE in a stable cavity for further exploration of biological function.
ISSN:1549-9618
1549-9626
DOI:10.1021/ct500238k