Loading…

Mechanism of Oxygen Activation in a Flavin-Dependent Monooxygenase: A Nearly Barrierless Formation of C4a-Hydroperoxyflavin via Proton-Coupled Electron Transfer

Understanding how flavin-dependent enzymes activate oxygen for their oxidation and oxygenation reactions is one of the most challenging issues in flavoenzymology. Density functional calculations and transient kinetics were performed to investigate the mechanism of oxygen activation in the oxygenase...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2015-07, Vol.137 (29), p.9363-9374
Main Authors: Visitsatthawong, Surawit, Chenprakhon, Pirom, Chaiyen, Pimchai, Surawatanawong, Panida
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Understanding how flavin-dependent enzymes activate oxygen for their oxidation and oxygenation reactions is one of the most challenging issues in flavoenzymology. Density functional calculations and transient kinetics were performed to investigate the mechanism of oxygen activation in the oxygenase component (C2) of p-hydroxyphenylacetate 3-hydroxylase (HPAH). We found that the protonation of dioxygen by His396 via a proton-coupled electron transfer mechanism is the key step in the formation of the triplet diradical complex of flavin semiquinone and •OOH. This complex undergoes intersystem crossing to form the open-shell singlet diradical complex before it forms the closed-shell singlet C4a-hydroperoxyflavin intermediate (C4aOOH). Notably, density functional calculations indicated that the formation of C4aOOH is nearly barrierless, possibly facilitated by the active site arrangement in which His396 positions the proximal oxygen of the •OOH in an optimum position to directly attack the C4a atom of the isoalloxazine ring. The nearly barrierless formation of C4aOOH agrees well with the experimental results; based on transient kinetics and Eyring plot analyses, the enthalpy of activation for the formation of C4aOOH is only 1.4 kcal/mol and the formation of C4aOOH by C2 is fast (∼106 M–1 s–1 at 4 °C). The calculations identified Ser171 as the key residue that stabilizes C4aOOH by accepting a hydrogen bond from the H­(N5) of the isoalloxazine ring. Both Ser171 and Trp112 facilitate H2O2 elimination by donating hydrogen bonds to the proximal oxygen of the OOH moiety during the proton transfer. According to our combined theoretical and experimental studies, the existence of a positively charged general acid at the position optimized for facilitating the proton-coupled electron transfer has emerged as an important catalytic feature for the oxygen activation process in flavin-dependent enzymes.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.5b04328