Loading…

Network-Based Approaches to Understand the Roles of miR-200 and Other microRNAs in Cancer

microRNAs (miRNA) are well suited to the task of regulating gene expression networks, because any given miRNA has the capacity to target dozens, if not hundreds, of genes. The simultaneous targeting of multiple genes within a pathway may enable miRNAs to more strongly regulate the pathway, or to ach...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Ill.), 2015-07, Vol.75 (13), p.2594-2599
Main Authors: Bracken, Cameron P, Khew-Goodall, Yeesim, Goodall, Gregory J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:microRNAs (miRNA) are well suited to the task of regulating gene expression networks, because any given miRNA has the capacity to target dozens, if not hundreds, of genes. The simultaneous targeting of multiple genes within a pathway may enable miRNAs to more strongly regulate the pathway, or to achieve more subtle control through the targeting of distinct subnetworks of genes. Therefore, as our capacity to discover miRNA targets en masse increases, so must our consideration of the complex networks in which these genes participate. We highlight recent studies in which the comprehensive identification of targets has been used to elucidate miRNA-regulated gene networks in cancer, focusing especially upon miRNAs such as members of the miR-200 family that regulate epithelial-mesenchymal transition (EMT), a reversible phenotypic switch whereby epithelial cells take on the more invasive properties of their mesenchymal counterparts. These studies have expanded our understanding of the roles of miRNAs in EMT, which were already known to form important regulatory loops with key transcription factors to regulate the epithelial or mesenchymal properties of cells.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.can-15-0287