Loading…

Controlled cutting of single-walled carbon nanotubes and low temperature annealing

Many applications in nanotechnology require short and unentangled single-walled carbon nanotubes (SWCNT). Liquid-phase oxidative cutting gives nonuniform short tubes and causes significant material loss. Mechanical cutting is good for shortening SWCNT, but it leaves collapsed tube ends and might not...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2013-11, Vol.63, p.61-70
Main Authors: Ren, Fang, Kanaan, Stacy A., Khalkhal, Fatemeh, Loebick, Codruta Zoican, Haller, Gary L., Pfefferle, Lisa D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many applications in nanotechnology require short and unentangled single-walled carbon nanotubes (SWCNT). Liquid-phase oxidative cutting gives nonuniform short tubes and causes significant material loss. Mechanical cutting is good for shortening SWCNT, but it leaves collapsed tube ends and might not be favorable for further manipulation. Solid-state reaction cutting is better for multi-walled carbon nanotubes than for SWCNT. Herein, we present a method combining mechanical and oxidative cutting. The SWCNT sample was first ground with a Wig-L-Bug grinding mill for 30min, introducing structural defects into the side walls of SWCNT. The treated SWCNT were then soaked in a Piranha solution, in which the oxidants attack the existing side wall defects and give a complete cut. According to statistical analysis from transmission electron microscopy, most of the shortened SWCNT fall in the range of 50–200nm. The material loss is 12.2wt%. The functional groups on the tube surface introduced by shortening were removed by refluxing in a soda lime/water suspension. Then, the carbon nanotubes were further annealed by sonicating in ethanol. After annealing, the defect level of shortened carbon nanotubes was reduced significantly, as determined by Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis.
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2013.06.039