Loading…

Association of single-stranded transferred DNA from Agrobacterium tumefaciens with tobacco cells

During the inception of crown gall tumorigenesis, the transferred DNA (T-DNA) is processed from the Ti (tumor inducing) plasmid of Agrobacterium tumefaciens and is transferred to plant cells. T-DNA processing and transfer require the induction of vir (virulence) genes by phenolic compounds secreted...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1994-04, Vol.91 (8), p.2994-2998
Main Authors: Yusibov, V.M, Steck, T.R, Gupta, V, Gelvin, S.B
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During the inception of crown gall tumorigenesis, the transferred DNA (T-DNA) is processed from the Ti (tumor inducing) plasmid of Agrobacterium tumefaciens and is transferred to plant cells. T-DNA processing and transfer require the induction of vir (virulence) genes by phenolic compounds secreted by wounded plant cells. After vir gene induction, both single-stranded (T-strands) and double-stranded forms of processed T-DNA accumulate in the bacteria. Although current models favor the transfer of T-strands to plants, there has yet been no experimental evidence to show this. In this paper, we show that T-strands disappear from acetosyringone-induced A. tumefaciens within 30 min of bacterial cocultivation with tobacco protoplasts. PCR analysis of T-DNA associated with protoplasts indicates that single-stranded, but not double-stranded, T-DNA can be detected in the plant cells within 30 min of bacterial cocultivation. Control experiments show that this T-DNA does not originate from lysed contaminating bacterial cells. T-DNA transfer depends on a functional bacterial virB operon. Protoplast infections using an A. tumefaciens virE mutant result in a low level of accumulation of T-strands in the plant cells.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.91.8.2994