Loading…

Ammonia synthesis enhanced by magnesium chloride absorption

Conversion to ammonia with Haber–Bosch catalysts can be increased above 95% by selective absorption of ammonia by MgCl2. The maximum conversion depends on reaction and absorption equilibria. At very short times, the measured conversion rate is the same with and without absorption by the MgCl2 salt;...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 2015-04, Vol.61 (4), p.1364-1371
Main Authors: Himstedt, Heath H., Huberty, Mark S., McCormick, Alon V., Schmidt, Lanny D., Cussler, E. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conversion to ammonia with Haber–Bosch catalysts can be increased above 95% by selective absorption of ammonia by MgCl2. The maximum conversion depends on reaction and absorption equilibria. At very short times, the measured conversion rate is the same with and without absorption by the MgCl2 salt; the overall rate constants are comparable to those in the literature. At larger times, conversion to ammonia can be over seven times greater with MgCl2 than without. However, the overall rate constants can be over 10 times slower because they are controlled by ammonia diffusion in the solid salt. An approximate, pseudosteady state theory consistent with these results provides a strategy for improving the overall rate while keeping the conversion over 90%. For example, the absorption rates might be increased using smaller particles of absorbent on a porous inert absorbent support. The results provide part of the basis for designing small scale ammonia plants. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1364–1371, 2015
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.14733