Loading…

LaB6 nanoparticles with carbon-doped silica coating for fluorescence imaging and near-IR photothermal therapy of cancer cells

In this study, LaB6 nanoparticles are used as a novel nanomaterial for near-infrared (NIR) photothermal therapy because they are cheaper than nanostructured gold, are easy to prepare and have an excellent NIR photothermal conversion property. Furthermore, the surface of LaB6 nanoparticles is coated...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia 2013-07, Vol.9 (7), p.7556-7563
Main Authors: Lai, B.-H., Chen, D.-H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, LaB6 nanoparticles are used as a novel nanomaterial for near-infrared (NIR) photothermal therapy because they are cheaper than nanostructured gold, are easy to prepare and have an excellent NIR photothermal conversion property. Furthermore, the surface of LaB6 nanoparticles is coated with a carbon-doped silica (C-SiO2) shell to introduce a fluorescent property and improve stability and biocompatibility. The resulting LaB6@C-SiO2 nanoparticles retain the excellent NIR photothermal conversion property and exhibit a bright blue emission under UV irradiation or a green emission under visible irradiation. Using a HeLa cancer cell line, it is demonstrated that LaB6@C-SiO2 nanoparticles have no significant cytotoxicity, but their presence leads to remarkable cell death after NIR irradiation. In addition, from the observation of cellular uptake, the fluorescence labeling function of LaB6@SiO2 (LaB6 core/SiO2 shell) nanoparticles is also confirmed. These results suggest that LaB6@C-SiO2 nanoparticles may potentially serve as an efficient multifunctional nano-platform for simultaneous fluorescent imaging and NIR-triggered photothermal therapy of cancer cells.
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2013.03.034