Loading…

Mechanism of the corrosion exfoliation of a polymer coating from a carbon steel

A mechanism of the atmospheric corrosion of a carbon steel under polymer (paint and varnish) coatings is studied. The potential distribution around an artificial coating defect was measured in situ with a scanning Kelvin probe (SKP). The potential gradient between the steel surface at the defect and...

Full description

Saved in:
Bibliographic Details
Published in:Protection of Metals 2009-11, Vol.45 (6), p.735-745
Main Authors: Nazarov, A. P., Thierry, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A mechanism of the atmospheric corrosion of a carbon steel under polymer (paint and varnish) coatings is studied. The potential distribution around an artificial coating defect was measured in situ with a scanning Kelvin probe (SKP). The potential gradient between the steel surface at the defect and under the coating determines the mechanism of the subfilm corrosion. Measuring the galvanic currents in a steel under coating-steel at defect model system revealed the spatial separation of partial electrochemical reactions. The separation was additionally confirmed by the elemental analysis of the metal surface upon removing the coating. The mechanism of corrosion exfoliation is shown to differ depending on the kind of rate, which determines the electrochemical reaction at the coating defect. In the presence of aqueous NaCl electrolyte, the defect acts as an anode, which results in the cathodic exfoliation of the coating. In the case of drier corrosion in an atmosphere at a humidity of 95%, the steel at a defect acts as a cathode with respect to the surrounding interface, which leads to the development of anodic zones around the defect.
ISSN:2070-2051
1608-327X
2070-206X
DOI:10.1134/S2070205109060173