Loading…

Variability of CONUS Lightning in 2003–12 and Associated Impacts

Changes in lightning characteristics over the conterminous United States (CONUS) are examined to support the National Climate Assessment (NCA) program. Details of the variability of cloud-to-ground (CG) lightning characteristics over the decade 2003–12 are provided using data from the National Light...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied meteorology and climatology 2015-01, Vol.54 (1), p.15-41
Main Authors: Koshak, William J., Cummins, Kenneth L., Buechler, Dennis E., Vant-Hull, Brian, Blakeslee, Richard J., Williams, Earle R., Peterson, Harold S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Changes in lightning characteristics over the conterminous United States (CONUS) are examined to support the National Climate Assessment (NCA) program. Details of the variability of cloud-to-ground (CG) lightning characteristics over the decade 2003–12 are provided using data from the National Lightning Detection Network (NLDN). Changes in total (CG + cloud flash) lightning across part of the CONUS during the decade are provided using satellite Lightning Imaging Sensor (LIS) data. The variations in NLDN-derived CG lightning are compared with available statistics on lightning-caused impacts to various U.S. economic sectors. Overall, a downward trend in total CG lightning count is found for the decadal period; the 5-yr mean NLDN CG count decreased by 12.8% from 25 204 345.8 (2003–07) to 21 986 578.8 (2008–12). There is a slow upward trend in the fraction and number of positive-polarity CG lightning, however. Associated lightning-caused fatalities and injuries, and the number of lightning-caused wildland fires and burn acreage also trended downward, but crop and personal-property damage costs increased. The 5-yr mean LIS total lightning changed little over the decadal period. Whereas the CONUS-averaged dry-bulb temperature trended upward during the analysis period, the CONUS-averaged wet-bulb temperature (a variable that is better correlated with lightning activity) trended downward. A simple linear model shows that climate-induced changes in CG lightning frequency would likely have a substantial and direct impact on humankind (e.g., a long-term upward trend of 1°C in wet-bulb temperature corresponds to approximately 14 fatalities and over $367 million in personal-property damage resulting from lightning).
ISSN:1558-8424
1558-8432
DOI:10.1175/JAMC-D-14-0072.1