Loading…

Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells

To evaluate the effect of conditioned medium from human uterine cervical stem cells (CM-hUCESCs) on corneal epithelial healing in a rat model of dry eye after alkaline corneal epithelial ulcer. We also tested the bactericidal effect of CM-hUCESCs. Dry eye was induced in rats by extraocular lacrimal...

Full description

Saved in:
Bibliographic Details
Published in:Investigative ophthalmology & visual science 2015-01, Vol.56 (2), p.983-992
Main Authors: Bermudez, Maria A, Sendon-Lago, Juan, Eiro, Noemi, Treviño, Mercedes, Gonzalez, Francisco, Yebra-Pimentel, Eva, Giraldez, Maria Jesus, Macia, Manuel, Lamelas, Maria Luz, Saa, Jorge, Vizoso, Francisco, Perez-Fernandez, Roman
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To evaluate the effect of conditioned medium from human uterine cervical stem cells (CM-hUCESCs) on corneal epithelial healing in a rat model of dry eye after alkaline corneal epithelial ulcer. We also tested the bactericidal effect of CM-hUCESCs. Dry eye was induced in rats by extraocular lacrimal gland excision, and corneal ulcers were produced using NaOH. Corneal histologic evaluation was made with hematoxylin-eosin (H&E) staining. Real-time PCR was used to evaluate mRNA expression levels of proinflammatory cytokines. We also studied the bactericidal effect of CM-hUCESCs in vitro and on infected corneal contact lenses (CLs) using Escherichia coli and Staphylococcus epidermidis bacteria. In addition, in order to investigate proteins from CM-hUCESCs that could mediate these effects, we carried out a human cytokine antibody array. After injury, dry eyes treated with CM-hUCESCs significantly improved epithelial regeneration and showed reduced corneal macrophage inflammatory protein-1 alpha (MIP-1α) and TNF-α mRNA expression as compared to untreated eyes and eyes treated with culture medium or sodium hyaluronate ophthalmic drops. In addition, we found in CM-hUCESCs high levels of proteins, such as tissue inhibitors of metalloproteinases 1 and 2, fibroblast growth factor 6 and 7, urokinase receptor, and hepatocyte growth factor, that could mediate these effects. In vitro, CM-hUCESCs showed a clear bactericidal effect on both E. coli and S. epidermidis and CLs infected with S. epidermidis. Analyses of CM-hUCESCs showed elevated levels of proteins that could be involved in the bactericidal effect, such as the chemokine (C-X-C motif) ligands 1, 6, 8, 10, and the chemokine (C-C motif) ligands 5 and 20. Treatment with CM-hUCESCs improved wound healing of alkali-injured corneas and showed a strong bactericidal effect on CLs. Patients using CLs and suffering from dry eye, allergies induced by commercial solutions, or small corneal injuries could benefit from this treatment.
ISSN:0146-0404
1552-5783
DOI:10.1167/iovs.14-15859