Loading…

Node shift method for stiffness-based optimization of single-layer reticulated shells

This paper presents a node shift method to find the optimal distribution of nodes in single-layer reticulated shells. The optimization process searches for the minimum strain energy configuration and this leads to reduced sensitivity in initial imper- fections. Strain energy sensitivity numbers are...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Zhejiang University. A. Science 2014, Vol.15 (2), p.97-107
Main Authors: Cui, Chang-yu, Jiang, Bao-shi, Wang, You-bao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a node shift method to find the optimal distribution of nodes in single-layer reticulated shells. The optimization process searches for the minimum strain energy configuration and this leads to reduced sensitivity in initial imper- fections. Strain energy sensitivity numbers are derived for free shift and restricted shift where nodes can move freely in the 3D space or have to move within a predefmed surface respectively. Numerical examples demonstrate the efficiency of the proposed approach. It was found that optimized structures achieve higher ultimate load and are less sensitive to imperfections than the initial structure. The configuration of the final structure is closely related to factors like the initial structural configuration, spatial conditions, etc. Based on different initial conditions, architects can be provided with diverse reasonable structures. Furthermore, by amending the defined shapes and nodal distributions, it is possible to improve the mechanical behavior of the structures.
ISSN:1673-565X
1862-1775
DOI:10.1631/jzus.A1300239