Static and dynamic behaviors of belt-drive dynamic systems with a one-way clutch

This paper focuses on the nontrivial equilibrium and the steady-state periodic response of belt-drive system with a one-way clutch and belt flexural rigidity. A nonlinear piecewise discrete–continuous dynamic model is established by modeling the motions of the translating belt spans as transverse vi...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2014-10, Vol.78 (2), p.1553-1575
Main Authors: Ding, Hu, Li, Da-Peng
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper focuses on the nontrivial equilibrium and the steady-state periodic response of belt-drive system with a one-way clutch and belt flexural rigidity. A nonlinear piecewise discrete–continuous dynamic model is established by modeling the motions of the translating belt spans as transverse vibrations of axially moving viscoelastic beams. The rotations of the pulleys and the accessory are also considered. Furthermore, the transverse vibrations and the rotation motions are coupled by nonlinear dynamic tension. The nontrivial equilibriums of the belt-drive system are obtained by an iterative scheme via the differential and integral quadrature methods (DQM and IQM). Moreover, the periodic fluctuation of the driving pulley is modeled as the excitation of the belt-drive system. The steady-state periodic responses of the dynamic system are, respectively, studied via the high-order Galerkin truncation as well as the DQM and IQM. The time histories of the system are numerically calculated based on the 4th Runge–Kutta time discretization method. Furthermore, the frequency–response curves are presented from the numerical solutions. Based on the steady-state periodic response, the resonance areas of the dynamic system are obtained by using the frequency sweep. Moreover, the influences of the truncation terms of the Galerkin method, such as 6-term, 8-term, 10-term, 12-term, and 16-term, are investigated by comparing with the DQM and IQM. Numerical results demonstrate that the one-way clutch reduces the resonance responses of the belt-drive system via the torque-transmitting directional function. Furthermore, the comparisons in numerical examples show that the investigation on steady-state responses of the belt-drive system with a one-way clutch and belt flexural rigidity needs 16-term truncation
ISSN:0924-090X
1573-269X